(Ⅱ)观察散点图.从中选择一个合适的函数模型.并求出该拟合模型的解析式,(Ⅲ)如果确定在白天7时~19时当浪高不低于0.8米时才进行训练.试安排恰当的训练时间. 查看更多

 

题目列表(包括答案和解析)

某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度(米)随着时间而周期性变化,每天各时刻的浪高数据的平均值如下表:

0
3
6
9
12
15
18
21
24

1.0
1.4
1.0
0.6
1.0
1.4
0.9
0.5
1.0
小题1:试画出散点图;
小题2:观察散点图,从中选择一个合适的函数模型,并求出该拟合模型的解析式;
小题3:如果确定在白天7时~19时当浪高不低于0.8米时才进行训练,试安排恰当的训练时间.

查看答案和解析>>

某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度(米)随着时间而周期性变化,每天各时刻的浪高数据的平均值如下表:

0

3

6

9

12

15

18

21

24

1.0

1.4

1.0

0.6

1.0

1.4

0.9

0.5

1.0

试画出散点图;

观察散点图,从中选择一个合适的函数模型,并求出该拟合模型的解析式;

如果确定在白天7时~19时当浪高不低于0.8米时才进行训练,试安排恰当的训练时间.

查看答案和解析>>

某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度(米)随着时间而周期性变化,每天各时刻的浪高数据的平均值如下表:

0

3

6

9

12

15

18

21

24

1.0

1.4

1.0

0.6

1.0

1.4

0.9

0.5

1.0

(Ⅰ)试画出散点图;

(Ⅱ)观察散点图,从中选择一个合适的函数模型,并求出该拟合模型的解析式;

(Ⅲ)如果确定在白天7时~19时当浪高不低于0。8米时才进行训练,试安排恰当的训练时间。

查看答案和解析>>

某“海之旅”表演队在一海滨区域进行集训,该海滨区域的海浪高度y(米)随着时间t(0≤t≤24,单位:小时)而周期性变化.为了了解变化规律,该队观察若干天后,得到每天各时刻t的浪高数据的平均值如下表:
t(时)3691215182124
y(米)1.01.41.00.61.01.40.90.41.0
(1)试画出散点图;
(2)观察散点图,从y=ax+b、y=Asin(ωt+φ)+b、y=Acos(ωt+φ)中选择一个合适的函数模型,并求出该拟合模型的解析式;
(3)如果确定当浪高不低于0.8米时才进行训练,试安排白天内进行训练的具体时间段.

查看答案和解析>>

某“海之旅”表演队在一海滨区域进行集训,该海滨区域的海浪高度y(米)随着时间t(0≤t≤24,单位:小时)而周期性变化.为了了解变化规律,该队观察若干天后,得到每天各时刻t的浪高数据的平均值如下表:
t(时)03691215182124
y(米)1.01.41.00.61.01.40.90.41.0
(1)试画出散点图;
(2)观察散点图,从y=ax+b、y=Asin(ωt+φ)+b、y=Acos(ωt+φ)中选择一个合适的函数模型,并求出该拟合模型的解析式;
(3)如果确定当浪高不低于0.8米时才进行训练,试安排白天内进行训练的具体时间段.

查看答案和解析>>


同步练习册答案