题目列表(包括答案和解析)
设双曲线的两个焦点分别为、,离心率为2.
(1)求双曲线的渐近线方程;
(2)过点能否作出直线,使与双曲线交于、两点,且,若存在,求出直线方程,若不存在,说明理由.
【解析】(1)根据离心率先求出a2的值,然后令双曲线等于右侧的1为0,解此方程可得双曲线的渐近线方程.
(2)设直线l的方程为,然后直线方程与双曲线方程联立,消去y,得到关于x的一元二次方程,利用韦达定理表示此条件,得到关于k的方程,解出k的值,然后验证判别式是否大于零即可.
下面给出了关于复数的四种类比推理:
① 复数的加减法运算,可以类比多项式的加减法运算法则;
② 由向量 的性质 ,可以类比得到复数 的性质 ;
③ 方程 (a 、b 、c ∈ R )有两个不同实根的条件是,类比可以得到 方程 (a 、b 、c ∈ C)有两个不同复数根的条件是 ;
④ 由向量加法的几何意义,可以类比得到复数加法的几何意义。
其中类比得到的结论正确的是( *** )
A.① ③ B..② ④ C.② ③ D.① ④
下面给出了关于复数的四种类比推理:
① 复数的加减法运算,可以类比多项式的加减法运算法则;
② 由向量 的性质 ,可以类比得到复数 的性质 ;
③ 方程 (a 、b 、c ∈ R )有两个不同实根的条件是,类比可以得到 方程 (a 、b 、c ∈ C)有两个不同复数根的条件是 ;
④ 由向量加法的几何意义,可以类比得到复数加法的几何意义。
其中类比得到的结论正确的是( *** )
A.① ③ B..② ④ C.② ③ D.① ④
下面给出了关于复数的四个类比推理:①复数的除法运算可以类比根式的运算;②由实数a的性质|a|2=a2得到复数z的性质|z|2=z2;③方程ax2+bx+c=0(a,b,c∈R)有两个不同实数根的条件是b2-4ac>0可以类比得到:方程az2+bz+c=0(a,b,c∈C)有两个不同复数根的条件是b2-4ac>0;④由向量加、减法的几何意义可以类比得到复数加、减法的几何意义.
其中类比错误的是
①③
②④
①④
②③
下面给出了关于复数的四种类比推理:
① 复数的加减法运算法则,可以类比多项式的加减法运算法则;
② 由向量 的性质 ,可以类比得到复数 的性质 ;
③ 方程 (a 、b 、c ∈ R )有两个不同实根的条件是, 类比可以得到 方程 (a 、b 、c ∈ C)有两个不同复数根的条件是 ;
④ 由向量加法的几何意义,可以类比得到复数加法的几何意义.
其中类比得到的结论正确的是( )
A、① ③ B、 ② ④ C、② ③ D、① ④
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com