题目列表(包括答案和解析)
15.解:根据条件去画满足条件的二次函数图象就可判断出
某大型超市为促销商品,特举办“购物摇奖100%中奖”活动,凡消费者在该超市购物满20元,享受一次摇奖机会,购物满40元,享受两次摇奖机会,依次类推。摇奖机的旋转圆盘是均匀的,扇形区域A、B、C、D、E所对应的圆心角的比值分别为1:2:3:4:5。相应区域分别设立一、二、三、四、五等奖,奖金分别为5元、4元、3元、2元、1元。求某人购物30元,获得奖金的分布列.
BE | AB |
三棱柱中,侧棱与底面垂直,
,
,
分别是
,
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求三棱锥的体积.
【解析】第一问利连结,
,∵M,N是AB,
的中点∴MN//
.
又∵平面
,∴MN//平面
.
----------4分
⑵中年∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,∴四边形是正方形.∴
.∴
.连结
,
.
∴,又N中
的中点,∴
.
∵与
相交于点C,∴MN
平面
. --------------9分
⑶中由⑵知MN是三棱锥M-的高.在直角
中,
,
∴MN=.又
.
.得到结论。
⑴连结,
,∵M,N是AB,
的中点∴MN//
.
又∵平面
,∴MN//平面
.
--------4分
⑵∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,
∴四边形是正方形.∴
.
∴.连结
,
.
∴,又N中
的中点,∴
.
∵与
相交于点C,∴MN
平面
. --------------9分
⑶由⑵知MN是三棱锥M-的高.在直角
中,
,
∴MN=.又
.
三.解答题:本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤.
17. (本题满分10分)
已知函数,
(1)求函数的最小正周期;
(2)在中,已知
为锐角,
,
,求
边的长.
三、解答题:(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.)
16. (本小题满分12分)
已知向量,定义函数
(Ⅰ)求函数最小正周期;
(Ⅱ)在△ABC中,角A为锐角,且,求边AC的长.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com