由题意可知:,解得:------------3分 查看更多

 

题目列表(包括答案和解析)

阅读下面的文言文,完成下面5题。

李斯论  (清)姚鼐

苏子瞻谓李斯以荀卿之学乱天下,是不然。秦之乱天下之法,无待于李斯,斯亦未尝以其学事秦。

20070327

 
当秦之中叶,孝公即位,得商鞅任之。商鞅教孝公燔《诗》、《书》,明法令,设告坐之过,而禁游宦之民。因秦国地形便利,用其法,富强数世,兼并诸侯,迄至始皇。始皇之时,一用商鞅成法而已,虽李斯助之,言其便利,益成秦乱,然使李斯不言其便,始皇固自为之而不厌。何也?秦之甘于刻薄而便于严法久矣,其后世所习以为善者也。斯逆探始皇、二世之心,非是不足以中侈君张吾之宠。是以尽舍其师荀卿之学,而为商鞅之学;扫去三代先王仁政,而一切取自恣肆以为治,焚《诗》、《书》,禁学士,灭三代法而尚督责,斯非行其学也,趋时而已。设所遭值非始皇、二世,斯之术将不出于此,非为仁也,亦以趋时而已。

君子之仕也,进不隐贤;小人之仕也,无论所学识非也,即有学识甚当,见其君国行事,悖谬无义,疾首嚬蹙于私家之居,而矜夸导誉于朝庭之上,知其不义而劝为之者,谓天下将谅我之无可奈何于吾君,而不吾罪也;知其将丧国家而为之者,谓当吾身容可以免也。且夫小人虽明知世之将乱,而终不以易目前之富贵,而以富贵之谋,贻天下之乱,固有终身安享荣乐,祸遗后人,而彼宴然无与者矣。嗟乎!秦未亡而斯先被五刑夷三族也,其天之诛恶人,亦有时而信也邪!

且夫人有为善而受教于人者矣,未闻为恶而必受教于人者也。荀卿述先王而颂言儒效,虽间有得失,而大体得治世之要。而苏氏以李斯之害天下罪及于卿,不亦远乎?行其学而害秦者,商鞅也;舍其学而害秦者,李斯也。商君禁游宦,而李斯谏逐客其始之不同术也,而卒出于同者,岂其本志哉!宋之世,王介甫以平生所学,建熙宁新法,其后章惇、曾布、张商英、蔡京之伦,曷尝学介甫之学耶?而以介甫之政促亡宋,与李斯事颇相类。夫世言法术之学足亡人国,固也。吾谓人臣善探其君之隐,一以委曲变化从世好者,其为人尤可畏哉!尤可畏哉!

 [注释]①宴然:安闲的样子。②谏逐客:秦始皇曾发布逐客令,驱逐六国来到秦国做官的人,李斯写了著名的《谏逐客书》,提出了反对意见。

对下列句子中加点的词语的解释,不正确的一项是(    )

    A.非是不足以中侈君张吾之宠         中:符合

    B.灭三代法而尚督责                 尚:崇尚

    C.知其不义而劝为之者               劝:鼓励

    D.而终不以易目前之富贵             易:交换

下列各组句子中,加点的词的意义和用法相同的一组是(    )

A.因秦国地形便利             不如因普遇之

    B.设所遭值非始皇、二世       非其身之所种则不食

    C.且夫小人虽明知世之将乱       臣死且不避,卮酒安足辞

    D.不亦远乎                     王之好乐甚,则齐国其庶几乎

下列各项中,加点词语与现代汉语意义不相同的一项是(    )

    A.小人之仕也,无论所学识非也

    B.而大体得治世之要

C.而以富贵之谋,贻天下之乱

    D.一以委曲变化从世好者

下列各句中对文章的阐述,不正确的一项是(    )

A.苏轼认为李斯以荀卿之学辅佐秦朝行暴政,致使天下大乱,作者则认为李斯是完全舍弃了荀子的说学,李斯的做法只不过是追随时势罢了。

B.作者由论李斯事秦进而泛论人臣事君的问题,强调为臣者对于国君的“悖谬无义”之政,不应为自身的富贵而阿附甚至助长之。

C.此文主旨在于指出秦行暴政是君王自身的原因,作者所论的不可“趋时”,“中侈君张吾之宠”的道理,在今天仍有借鉴意义。

D.文章开门见山,摆出苏轼的观点,然后通过对秦国发展历史的分析,驳斥了苏说的谬论,提出了自己的见解。论证严密,逐层深入,是一篇典范的史论。

把文言文阅读材料中画横线的句子翻译成现代汉语。

   (1)秦之甘于刻薄而便于严法久矣

译文:                                                                    

   (2)谓天下将谅我之无可奈何于吾君,而不吾罪也

译文:                                                                   

   (3)其始之不同术也,而卒出于同者,岂其本志哉

译文:                                                                   

查看答案和解析>>

已知函数,其中.

  (1)若处取得极值,求曲线在点处的切线方程;

  (2)讨论函数的单调性;

  (3)若函数上的最小值为2,求的取值范围.

【解析】第一问,处取得极值

所以,,解得,此时,可得求曲线在点

处的切线方程为:

第二问中,易得的分母大于零,

①当时, ,函数上单调递增;

②当时,由可得,由解得

第三问,当时由(2)可知,上处取得最小值

时由(2)可知处取得最小值,不符合题意.

综上,函数上的最小值为2时,求的取值范围是

 

查看答案和解析>>

(本小题满分14分)

已知函数对于任意),都有式子成立(其中为常数).

(Ⅰ)求函数的解析式;

(Ⅱ)利用函数构造一个数列,方法如下:

对于给定的定义域中的,令,…,,…

在上述构造过程中,如果=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果不在定义域中,那么构造数列的过程就停止.

(ⅰ)如果可以用上述方法构造出一个常数列,求的取值范围;

(ⅱ)是否存在一个实数,使得取定义域中的任一值作为,都可用上述方法构造出一个无穷数列?若存在,求出的值;若不存在,请说明理由;

(ⅲ)当时,若,求数列的通项公式.

查看答案和解析>>

(本小题满分14分)
已知函数对于任意),都有式子成立(其中为常数).
(Ⅰ)求函数的解析式;
(Ⅱ)利用函数构造一个数列,方法如下:
对于给定的定义域中的,令,…,,…
在上述构造过程中,如果=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求的取值范围;
(ⅱ)是否存在一个实数,使得取定义域中的任一值作为,都可用上述方法构造出一个无穷数列?若存在,求出的值;若不存在,请说明理由;
(ⅲ)当时,若,求数列的通项公式.

查看答案和解析>>

已知递增等差数列满足:,且成等比数列.

(1)求数列的通项公式

(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.

【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为

由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。

解:(1)设数列公差为,由题意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等价于

时,;当时,

,所以猜想,的最小值为.     …………8分

下证不等式对任意恒成立.

方法一:数学归纳法.

时,,成立.

假设当时,不等式成立,

时,, …………10分

只要证  ,只要证 

只要证  ,只要证 

只要证  ,显然成立.所以,对任意,不等式恒成立.…14分

方法二:单调性证明.

要证 

只要证  ,  

设数列的通项公式,        …………10分

,    …………12分

所以对,都有,可知数列为单调递减数列.

,所以恒成立,

的最小值为

 

查看答案和解析>>


同步练习册答案