则有||= x -x2 =.故. 查看更多

 

题目列表(包括答案和解析)

阅读下面所给材料:已知数列{an},a1=2,an=3an-1+2,求数列的通项an
解:令an=an-1=x,则有x=3x+2,所以x=-1,故原递推式an=3an-1+2可转化为:
an+1=3(an-1+1),因此数列{an+1}是首项为a1+1,公比为3的等比数列.
根据上述材料所给出提示,解答下列问题:
已知数列{an},a1=1,an=3an-1+4,
(1)求数列的通项an;并用解析几何中的有关思想方法来解释其原理;
(2)若记Sn=
n
k=1
1
lg(ak+2)lg(ak+1+2)
,求
lim
n→∞
Sn
(3)若数列{bn}满足:b1=10,bn+1=100bn3,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{bn}的通项公式bn

查看答案和解析>>

先阅读下面的文字:“求
1+
1+
1+…
的值时,采用了如下的方式:令
1+
1+
1+…
=x
,则有x=
1+x
,两边平方,得1+x=x2,解得x=
1+
5
2
(负值已舍去)”.可用类比的方法,求2+
1
2+
1
2+…
的值为
1+
2
1+
2

查看答案和解析>>

7.设x、y为正数,则有(x+y)(Equation.3)的最小值为

       A.15                         B.12                         C.9                           D.6

查看答案和解析>>

阅读下面所给材料:已知数列{an},a1=2,an=3an-1+2,求数列的通项an
解:令an=an-1=x,则有x=3x+2,所以x=-1,故原递推式an=3an-1+2可转化为:
an+1=3(an-1+1),因此数列{an+1}是首项为a1+1,公比为3的等比数列.
根据上述材料所给出提示,解答下列问题:
已知数列{an},a1=1,an=3an-1+4,
(1)求数列的通项an;并用解析几何中的有关思想方法来解释其原理;
(2)若记Sn=,求Sn
(3)若数列{bn}满足:b1=10,bn+1=100bn3,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{bn}的通项公式bn

查看答案和解析>>

(本大题18分)

阅读下面所给材料:已知数列{an},a1=2,an=3an–1+2,求数列的通项an

解:令an=an–1=x,则有x=3x+2,所以x= –1,故原递推式an=3an–1+2可转化为:

an+1=3(an–1+1),因此数列{an+1}是首项为a1+1,公比为3的等比数列。

根据上述材料所给出提示,解答下列问题:

已知数列{an},a1=1,an=3an–1+4,

(1)求数列的通项an;并用解析几何中的有关思想方法来解释其原理;

(2)若记Sn=,求Sn;

(3)若数列{bn}满足:b1=10,bn+1=100,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{bn}的通项公式bn

查看答案和解析>>


同步练习册答案