题目列表(包括答案和解析)
对于不等式某同学应用数学归纳法证明的过程如下:
(1)当时,,不等式成立
(2)假设时,不等式成立,即
那么时,
不等式成立根据(1)(2)可知,对于一切正整数不等式都成立。上述证明方法( )
A.过程全部正确 B.验证不正确
C.归纳假设不正确 D.从到的推理不正确
n2+n |
12+1 |
k2+k |
(k+1)2+(k+1) |
k2+3k+2 |
(k2+3k+2)+(k+2) |
(k+2)2 |
A、过程全部正确 |
B、n=1验得不正确 |
C、归纳假设不正确 |
D、从n=k到n=k+1的推理不正确 |
(1)当n=1时,≤1+1,不等式成立.
(2)假设n=k(k∈N+)时,不等式成立,即<k+1,则n=k+1时,
=(k+1)+1.
所以当n=k+1时,不等式成立.
上述证法( )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
∴当n=k+1时,不等式成立.
根据(1)和(2)可知对任何都成立.则上述证法( )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
(1)当n=1时,≤1+1,不等式成立.
(2)假设n=k(k∈N*)时,不等式成立,即≤k+1,则n=k+1时,.
∴当n=k+1时,不等式成立.
上述证法( )
A.过程全部正确
B.n=1时的验证不正确
C.归纳假设不正确
D.没有用到从n=k到n=k+1的推理
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com