这说明时.不等式成立, ------------11分 查看更多

 

题目列表(包括答案和解析)

用数学归纳法证明不等式2n>n2时,第一步需要验证n0=(  )时,不等式成立.

查看答案和解析>>

对于不等式
n2+n
<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,
12+1
<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即
k2+k
<k+1,则当n=k+1时,
(k+1)2+(k+1)
=
k2+3k+2
(k2+3k+2)+(k+2)
=
(k+2)2
=(k+1)+1,∴当n=k+1时,不等式成立.
则上述证法(  )
A、过程全部正确
B、n=1验得不正确
C、归纳假设不正确
D、从n=k到n=k+1的推理不正确

查看答案和解析>>

对于不等式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:

(1)当n=1时,<1+1,不等式成立.

(2)假设当nk(k∈N*k≥1)时,不等式成立,即<k+1,则当nk+1时,<=(k+1)+1,

所以当nk+1时,不等式成立,则上述证法                    (  ).

A.过程全部正确

B.n=1验得不正确

C.归纳假设不正确

D.从nknk+1的推理不正确

查看答案和解析>>

∴当nk+1时,不等式成立.

根据(1)和(2)可知对任何都成立.则上述证法(  )

A.过程全部正确

B.n=1验得不正确

C.归纳假设不正确

D.从nknk+1的推理不正确

查看答案和解析>>

用数学归纳法证明不等式2n>n2时,第一步需要验证n0=_____时,不等式成立(    )

A.5                B.2和4            C.3                D.1

 

查看答案和解析>>


同步练习册答案