题目列表(包括答案和解析)
男 | 女 | |
喜欢数学 | 7 | 3 |
不喜欢数学 | 3 | 7 |
n(ad-bc)2 |
(a+c)(b+d)(a+b)(c+d) |
a |
b |
a |
b |
m |
a |
b |
n |
a |
b |
a |
b |
m |
n |
m |
n |
a |
b |
a |
b |
m |
a |
b |
n |
a |
b |
a |
b |
m |
n |
m |
n |
在平面直角坐标系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),满足向量与向量共线,且点Bn(n,bn)(n∈N*)都在斜率为6的同一条直线上.
(1)试用a1,b1与n来表示an,bn;
(2)设a1=a,b1=-a,且12<a≤15,求数列{an}中的最小值的项.
在平面直角坐标系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),满足向量与向量共线,且点Bn(n,bn)(n∈N*)都在斜率为6的同一条直线上.
(1)试用a1,b1与n来表示an,bn;
(2)设a1=a,b1=-a,且12<a≤15,求数列{an}中的最小值的项.
一、选择题(每小题5分,共50分)
1―5:ABCDC 6―10:BAAAD
二、填空题(每小题4分,共24分)
11.;12.99;13.207;14.0;15.2;
16.[1,2]或填[3,4]或填它们的任一子区间(答案有无数个)。
三、解答题(共76分)
17.(1)解:由
有………………2分
由,……………3分
由余弦定理……5分
当…………7分
(2)由
则,……………………9分
由
……………………13分
18.(本小题满分13分)
解:(1)①只安排2位接线员,则2路及2路以下电话同时打入均能接通,其概率
故所求概率;……………………4分
②“损害度” ………………8分
(2)∵在一天的这一时间内同时电话打入数ξ的数学期望为
0×0.13+1×0.35+2×0.27+3×0.14+4×0.85+5×0.02+6×0.01=1.79
∴一周五个工作日的这一时间电话打入数ξ的数学期望等于5×1.79=8.95.……13分
19.(1)连结B1D1,过F作B1D1的垂线,垂足为K.
∵BB1与两底面ABCD,A1B
FK⊥BB1
∴FK⊥B1D1 FK⊥平面BDD1B1,
B1D1∩BB1=B1
又AE⊥BB1
又AE⊥BD AE⊥平面BDD1B1 因此KF∥AE.
BB1∩BD=B
∴∠BFK为异面直线BF与AE所成的角,连结BK,由FK⊥面BDD1B1得FK⊥BK,
从而△BKF为Rt△.
在Rt△B1KF和Rt△B1D
又BF=.
∴异面直线BF与AE所成的角为arccos.……………………4分
(2)由于DA⊥平面AA1B由A作BF的垂线AG,垂足为G,连结DG,由三垂线定理
知BG⊥DG.
∴∠AGD即为平面BDF与平面AA1B所成二面角的平面角. 且∠DAG=90°
在平面AA1B1B中,延长BF与AA1交于点S.
|