题目列表(包括答案和解析)
(本小题满分12分) 已知函数在上是增函数,在上为减函数.
(Ⅰ)求的表达式;
(Ⅱ)若当时,不等式恒成立,求实数的值;
(Ⅲ)是否存在实数使得关于的方程在区间[0,2]上恰好有两个相异的实根,若存在,求实数的取值范围.
已知函数f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函数,在(-∞,-2)上为减函数.
(1)求f(x)的表达式;
(2)若当x∈时,不等式f(x)<m恒成立,求实数m的值;
(3)是否存在实数b使得关于x的方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根,若存在,求实数b的取值范围.
1 | e |
“杨辉三角”与二项式系数的性质
(1)对称性:在(a+b)n的展开式中,_________的两项的二项式系数相等.
(2)增减性与最大值:当r<时,二项式系数是逐渐_________的,由对称性可知它的后半部分是逐渐_________的,且在中间取到最大值.当n是偶数时,中间一项的二项式系数_________取得最大值;当n是奇数时,中间两项的二项式系数_________相等,且同时取到最大值.
(本小题15分)已知函数f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函数,
在(-∞,-2)上为减函数.
(1)求f(x)的表达式;
(2)若当x∈时,不等式f(x)<m恒成立,求实数m的值;
(3)是否存在实数b使得关于x的方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根,若存在,求实数b的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com