题目列表(包括答案和解析)
已知曲线的参数方程是(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线:的极坐标方程是=2,正方形ABCD的顶点都在上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为上任意一点,求的取值范围.
【命题意图】本题考查了参数方程与极坐标,是容易题型.
【解析】(Ⅰ)由已知可得,,
,,
即A(1,),B(-,1),C(―1,―),D(,-1),
(Ⅱ)设,令=,
则==,
∵,∴的取值范围是[32,52]
在棱长为的正方体中,是线段的中点,.
(1) 求证:^;
(2) 求证://平面;
(3) 求三棱锥的表面积.
【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用,得到结论,第二问中,先判定为平行四边形,然后,可知结论成立。
第三问中,是边长为的正三角形,其面积为,
因为平面,所以,
所以是直角三角形,其面积为,
同理的面积为, 面积为. 所以三棱锥的表面积为.
解: (1)证明:根据正方体的性质,
因为,
所以,又,所以,,
所以^. ………………4分
(2)证明:连接,因为,
所以为平行四边形,因此,
由于是线段的中点,所以, …………6分
因为面,平面,所以∥平面. ……………8分
(3)是边长为的正三角形,其面积为,
因为平面,所以,
所以是直角三角形,其面积为,
同理的面积为, ……………………10分
面积为. 所以三棱锥的表面积为
已知函数,,k为非零实数.
(Ⅰ)设t=k2,若函数f(x),g(x)在区间(0,+∞)上单调性相同,求k的取值范围;
(Ⅱ)是否存在正实数k,都能找到t∈[1,2],使得关于x的方程f(x)=g(x)在[1,5]上有且仅有一个实数根,且在[-5,-1]上至多有一个实数根.若存在,请求出所有k的值的集合;若不存在,请说明理由.
【解析】本试题考查了运用导数来研究函数的单调性,并求解参数的取值范围。与此同时还能对于方程解的问题,转化为图像与图像的交点问题来长处理的数学思想的运用。
双曲线的一条渐近线为,由方程组,消去y,得有唯一解,所以△=,
所以,,故选D. w.w.w.k.s.5.u.c.o.m
答案:D.
【命题立意】:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.
P()是平面上的一个点,设事件A表示“”,其中为实常数.
(1)若均为从0,1,2,3,4五个数中任取的一个数,求事件A发生的概率;
(2)若均为从区间[0,5)任取的一个数,求事件A发生的概率.
【解析】本试题考查了几何概型和古典概型结合的一道综合概率计算试题。首先明确区域中的所有基本事件数或者区域表示的面积,然后分别结合概率公式求解得到。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com