2.第Ⅱ卷所有题目的答案考生需用0.5毫米黑色签字笔答在答题纸指定的位置上. 查看更多

 

题目列表(包括答案和解析)

(08年山东卷)(本小题满分12分)

将数列中的所有项按每一行比上一行多一项的规则排成如下数表:

 

    

      

记表中的第一列数构成的数列为为数列的前项和,且满足

(Ⅰ)证明数列成等差数列,并求数列的通项公式;

(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第行所有项的和.

查看答案和解析>>

每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试题卷上。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.

1.设全集,则=

(A)          (B)      (C)       (D)

2.已知圆的方程为,那么下列直线中经过圆心的直线方程为

(A)                  (B)

(C)                  (D)

查看答案和解析>>

选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

查看答案和解析>>

(本小题满分14分)

将数列中的所有项按每一行比上一行多一项的规则排成如下数表:

 

    

      

………………………

记表中的第一列数构成的数列为为数列的前项和,且满足

(1)证明:

(2)求数列的通项公式;

(3)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第行所有项的和.

 

查看答案和解析>>

将数列中的所有项按每一行比上一行多一项的规则排成下表:

  

      

          

……

记表中的第一列数 、   、   ……构成的数列为为数列的前项和,且满足

(I)证明数列成等差数列,并求数列的通项公式;

(II)上表中,若从第三行起,每一行中的数从左到右的顺序均构成等比数列,且公比为同一个正数,当时,求上表中第行所有项的和

查看答案和解析>>

 

一、选择题

AACCD   BBDDD   AC

二、填空题

13.    14.T13    15.①⑤    16.

三、解答题

17.解:(Ⅰ)因为

由正弦定理,得,              ……3分

整理,得

因为的三内角,所以,    

因此  .                                                 ……6分

   (Ⅱ),即,                ……8分

由余弦定理,得,所以,      ……10分

解方程组,得 .                       ……12分

18.(本题满分12分)

解法一:记的比赛为

  (Ⅰ)齐王与田忌赛马,有如下六种情况:

,

, ,

, .  ………………………3分

  其中田忌获胜的只有一种,所以田忌获胜的概率为

   …………………………………………………………………………………………6分

(Ⅱ)已知齐王第一场必出上等马,若田忌第一场出上等马或中等马,则剩下两场中至少输掉一场,这时田忌必败.

为了使自己获胜的概率最大,田忌第一场应出下等马,后两场有两种情形:

①若齐王第二场派出中等马,可能对阵情形是

或者,所以田忌获胜的概率为; ………………………9分

②若齐王第二场派出下等马,可能对阵情形是

或者,所以田忌获胜的概率为

所以田忌按或者的顺序出马,才能使自己获胜的概率达到最大值

   ………………………………………………………………………………………12分

解法二:各种对阵情况列成下列表格:

 

 

1

2

3

4

5

6

                            ………………………3分

(Ⅰ)其中田忌获胜的只有第五种这一种情形,所以田忌获胜的概率为.……6分

(Ⅱ)为了使自己获胜的概率最大,田忌第一场应出下等马,即只能是第五、第六两种情形.  …………………………………………………9分

其中田忌获胜的只有第五种这一种情形,所以田忌按或者的顺序出马,才能使自己获胜的概率达到最大值.………………………12分

19.(本题满分12分)

解证: (Ⅰ) 连结连结

∵四边形是矩形 

中点

中点,从而 ------------3分

平面,平面

∥平面-----------------------5分

(Ⅱ)(方法1)

三角形的面积-------------------8分

到平面的距离为的高 

---------------------------------11分

因此,三棱锥的体积为。------------------------------------12分

(方法2)

为等腰,取底边的中点

的面积 -----------8分

,∴点到平面的距离等于到平面

的距离,

由于

,则就是到平面的距离,

,----------11

---------------------12分

(方法3)

到平面的距离为的高 

∴四棱锥的体积------------------------9分

三棱锥的体积

  ∴---------------------------------------------11分

       因此,三棱锥的体积为。-------------------------------------12分

20.(Ⅰ)依题意知,                                                     

,

.                                        

∴所求椭圆的方程为.                     ……4分              

(Ⅱ)设点关于直线的对称点为

                           ……6分                 

解得:.                 ……8分               

.                                ……10分           

∵ 点在椭圆:上,

, 则

的取值范围为.                      ……12分

21.解:(Ⅰ)由知,定义域为

.     ……………………3分

时,,                    ………………4分

时, .                            ………………5分

所以的单调增区间是,

的单调减区间是.           …………………… ………………6分

(Ⅱ)由(Ⅰ)知,上单调递增,

上单调递减,在上单调递增,且当时,

, 所以的极大值为

极小值为.   ………………………8分

又因为, 

,  ………10分

所以在的三个单调区间上,

直线的图象各有一个交点,

当且仅当, 因此,

的取值范围为.   ………………12分

22.解:(Ⅰ)当时,  ……………………………3分

       ∴=

      =

      =

      =  …………………………………7分

       (Ⅱ)  

  +

+

=

= ……………13分

当且仅当,即时,最小.……………………14分

 


同步练习册答案