(Ⅱ)若直线与函数的图象有3个交点.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

命题

①函数的图象与直线最多有一个交点;

②函数在区间上单调递增,则

③若,当时,,则

④函数的值域为R,则实数的取值范围是

⑤函数的图象关于轴对称;

以上命题正确的个数有(   )个

A、2         B、3         C、4         D、5

 

查看答案和解析>>

命题
①函数的图象与直线最多有一个交点;
②函数在区间上单调递增,则
③若,当时,,则
④函数的值域为R,则实数的取值范围是
⑤函数的图象关于轴对称;
以上命题正确的个数有(  )个
A.2B.3 C.4D.5

查看答案和解析>>

命题
①函数的图象与直线最多有一个交点;
②函数在区间上单调递增,则
③若,当时,,则
④函数的值域为R,则实数的取值范围是
⑤函数的图象关于轴对称;
以上命题正确的个数有(  )个

A.2B.3 C.4D.5

查看答案和解析>>

映射与函数:若A∈{1,2,3,4},B∈{a,b,c};问:A到B的映射有
 
个,B到A的映射有
 
个;A到B的函数有
 
个,若A∈{1,2,3},则A到B的一一映射有
 
个,函数y=φ(x)的图象与直线x=a交点的个数为
 
个.

查看答案和解析>>

已知函数的一系列对应值如下表:
x
y-1131-113
(1)根据表格提供的数据求函数y=f(x)的解析式;
(2)(文)当x∈[0,2π]时,求方程f(x)=2B的解.
(3)(理)若对任意的实数a,函数y=f(kx)(k>0),的图象与直线y=1有且仅有两个不同的交点,又当时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.

查看答案和解析>>

 

一、选择题

AACCD   BBDDD   AC

二、填空题

13.    14.T13    15.①⑤    16.

三、解答题

17.解:(Ⅰ)因为

由正弦定理,得,              ……3分

整理,得

因为的三内角,所以,    

因此  .                                                 ……6分

   (Ⅱ),即,                ……8分

由余弦定理,得,所以,      ……10分

解方程组,得 .                       ……12分

18.(本题满分12分)

解法一:记的比赛为

  (Ⅰ)齐王与田忌赛马,有如下六种情况:

,

, ,

, .  ………………………3分

  其中田忌获胜的只有一种,所以田忌获胜的概率为

   …………………………………………………………………………………………6分

(Ⅱ)已知齐王第一场必出上等马,若田忌第一场出上等马或中等马,则剩下两场中至少输掉一场,这时田忌必败.

为了使自己获胜的概率最大,田忌第一场应出下等马,后两场有两种情形:

①若齐王第二场派出中等马,可能对阵情形是

或者,所以田忌获胜的概率为; ………………………9分

②若齐王第二场派出下等马,可能对阵情形是

或者,所以田忌获胜的概率为

所以田忌按或者的顺序出马,才能使自己获胜的概率达到最大值

   ………………………………………………………………………………………12分

解法二:各种对阵情况列成下列表格:

 

 

1

2

3

4

5

6

                            ………………………3分

(Ⅰ)其中田忌获胜的只有第五种这一种情形,所以田忌获胜的概率为.……6分

(Ⅱ)为了使自己获胜的概率最大,田忌第一场应出下等马,即只能是第五、第六两种情形.  …………………………………………………9分

其中田忌获胜的只有第五种这一种情形,所以田忌按或者的顺序出马,才能使自己获胜的概率达到最大值.………………………12分

19.(本题满分12分)

解证: (Ⅰ) 连结连结

∵四边形是矩形 

中点

中点,从而 ------------3分

平面,平面

∥平面-----------------------5分

(Ⅱ)(方法1)

三角形的面积-------------------8分

到平面的距离为的高 

---------------------------------11分

因此,三棱锥的体积为。------------------------------------12分

(方法2)

为等腰,取底边的中点

的面积 -----------8分

,∴点到平面的距离等于到平面

的距离,

由于

,则就是到平面的距离,

,----------11

---------------------12分

(方法3)

到平面的距离为的高 

∴四棱锥的体积------------------------9分

三棱锥的体积

  ∴---------------------------------------------11分

       因此,三棱锥的体积为。-------------------------------------12分

20.(Ⅰ)依题意知,                                                     

,

.                                        

∴所求椭圆的方程为.                     ……4分              

(Ⅱ)设点关于直线的对称点为

                           ……6分                 

解得:.                 ……8分               

.                                ……10分           

∵ 点在椭圆:上,

, 则

的取值范围为.                      ……12分

21.解:(Ⅰ)由知,定义域为

.     ……………………3分

时,,                    ………………4分

时, .                            ………………5分

所以的单调增区间是,

的单调减区间是.           …………………… ………………6分

(Ⅱ)由(Ⅰ)知,上单调递增,

上单调递减,在上单调递增,且当时,

, 所以的极大值为

极小值为.   ………………………8分

又因为, 

,  ………10分

所以在的三个单调区间上,

直线的图象各有一个交点,

当且仅当, 因此,

的取值范围为.   ………………12分

22.解:(Ⅰ)当时,  ……………………………3分

       ∴=

      =

      =

      =  …………………………………7分

       (Ⅱ)  

  +

+

=

= ……………13分

当且仅当,即时,最小.……………………14分

 


同步练习册答案