将.得 ①由直线l与椭圆相交于两个不同的点.得 查看更多

 

题目列表(包括答案和解析)

设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG//AB.

(Ⅰ)求三角形ABC顶点C的轨迹方程;

(Ⅱ)设顶点C的轨迹为D,已知直线过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,满足OP⊥ON,求直线的方程.

【解析】

第一问因为设C(x,y)(

……3分

∵M是不等边三解形ABC的外心,∴|MA|=|MC|,即(2)

由(1)(2)得.所以三角形顶点C的轨迹方程为.…6分

第二问直线l的方程为y=kx+1

y。 ∵直线l与曲线D交于P、N两点,∴△=

,∴

得到直线方程。

 

查看答案和解析>>

(2009•卢湾区二模)如图,已知点H(-3,0),动点P在y轴上,点Q在x轴上,其横坐标不小于零,点M在直线PQ上,且满足
HP
PM
=0
PM
=-
3
2
MQ

(1)当点P在y轴上移动时,求点M的轨迹C;
(2)过定点F(1,0)作互相垂直的直线l与l',l与(1)中的轨迹C交于A、B两点,l'与(1)中的轨迹C交于D、E两点,求四边形ADBE面积S的最小值;
(3)(在下列两题中,任选一题,写出计算过程,并求出结果,若同时选做两题,
则只批阅第②小题,第①题的解答,不管正确与否,一律视为无效,不予批阅):
①将(1)中的曲线C推广为椭圆:
x2
2
+y2=1
,并
将(2)中的定点取为焦点F(1,0),求与(2)相类似的问题的解;
②(解答本题,最多得9分)将(1)中的曲线C推广为椭圆:
x2
a2
+
y2
b2
=1
,并
将(2)中的定点取为原点,求与(2)相类似的问题的解.

查看答案和解析>>

已知对任意平面向量
AB
=(x,y)
,将
AB
绕其起点沿顺时针方向旋转θ角得到向量
AP
=(xcosθ+ysinθ,-xsinθ+ycosθ)
,叫做将点B绕点A沿顺时针方向旋转θ角得到点P.
(1)已知平面内点A(1,2),点B(1+
2
,2-2
2
)
,将点B绕点A沿顺时针方向旋转
π
4
得到点P,求点P的坐标;
(2)设平面内曲线3x2+3y2+2xy=4上的每一点绕坐标原点O沿顺时针方向旋转
π
4
得到的点的轨迹是曲线C,求曲线C的方程;
(3)过(2)中曲线C的焦点的直线l与曲线C交于不同的两点A、B,当
OA
OB
=0
时,求△AOB的面积.

查看答案和解析>>

直角坐标系xOy中,曲线C的参数方程为
x=
6
cosθ
y=
2
sinθ
(θ为参数),直线l的参数方程为
x=
3
2
t
y=2-
1
2
t
(t为参数),T为直线l与曲线C的公共点.以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求点T的极坐标;
(Ⅱ)将曲线C上所有点的纵坐标伸长为原来的
3
倍(横坐标不变)后得到曲线W,过点T作直线m,若直线m被曲线W截得的线段长为2
3
,求直线m的极坐标方程.

查看答案和解析>>

(2011•徐汇区三模)定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1
x2
4
+y2=1

(1)若椭圆C2
x2
16
+
y2
4
=1
,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线l与两个“相似椭圆”
x2
a2
+
y2
b2
=1
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分别交于点A,B和点C,D,证明:|AC|=|BD|

查看答案和解析>>


同步练习册答案