(Ⅱ)集合M中的元素具有下面的性质:若的定义域为D.则对于任意[m.n]D.都存在[m.n].使得等式成立 .试用这一性质证明:方程只有一个实数根, 查看更多

 

题目列表(包括答案和解析)

M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足.”

(1)判断函数是否是集合M中的元素,并说明理由;

(2)集合M中的元素具有下面的性质:若的定义域为D,则对于任意,都存在,使得等式成立”,试用这一性质证明:方程只有一个实数根;

(3)设是方程的实数根,求证:对于定义域中任意的,当,且时,.

查看答案和解析>>

设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足.”

   (I)判断函数是否是集合M中的元素,并说明理由;

   (II)集合M中的元素具有下面的性质:若的定义域为D,则对于任意

[m,n]D,都存在[m,n],使得等式成立”,

试用这一性质证明:方程只有一个实数根;

   (III)设是方程的实数根,求证:对于定义域中任意的.

查看答案和解析>>

设M是由满足下列条件的函数构成的集合:“①方程有实数

根;②函数”[来源:学+科+网Z+X+X+K]

(I)判断函数是否是集合M中的元素,并说明理由;

(II)集合M中的元素具有下面的性质:若 的定义域为D,则对于任意

成立。试用这一性

质证明:方程只有一个实数根;

(III)对于M中的函数 的实数根,求证:对于定义

域中任意的

 

查看答案和解析>>

设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(x)<1”.
(Ⅰ)判断函数f(x)=
x
2
+
sinx
4
是否是集合M中的元素,并说明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根;
(Ⅲ)设x1是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2.

查看答案和解析>>

设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f(x)满足
0<f(x)<1”
(I)证明:函数f(x)=
3x
4
+
x3
3
(0≤x<
1
2
)是集合M中的元素;
(II)证明:函数f(x)=
3x
4
+
x3
3
(0≤x
1
2
)具有下面的性质:对于任意[m,n]⊆[0,
1
2
),都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.
(III)若集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.试用这一性质证明:对集合M中的任一元素f(x),方程f(x)-x=0只有一个实数根.

查看答案和解析>>

一、选择题:

1.C 2.D3.A4.C 5.C6.A7.B  8.D9.B10.D11.B 12.B

二、填空题:

13、  14、  15、1   16、一   17、4  18、56  19、  20、 21、 22、4/9  23、②  24、 25、 26、①

三、解答题:

16、解: (Ⅰ),  

 ∴

 解得

(Ⅱ)由,得:,   

   

17、解:(1)

的最小正周期,  

且当单调递增.

的单调递增区间(写成开区间不扣分).………6分

(2)当,当,即

所以.     

的对称轴.    

18、解:(Ⅰ)解法一:“有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”,记“有放回摸球两次,两球恰好颜色不同”为事件

∵“两球恰好颜色不同”共种可能,

解法二:“有放回摸取”可看作独立重复实验,

∵每次摸出一球得白球的概率为

∴“有放回摸两次,颜色不同”的概率为

(Ⅱ)设摸得白球的个数为,依题意得:

19、(Ⅰ)证明:  连结交于点,连结

是菱形, ∴的中点.

  *的中点, ∴.   

平面平面, ∴平面.

(Ⅱ)解法一:

 平面,平面,∴ .

,∴

是菱形,  ∴.

平面.

,垂足为,连接,则,

所以为二面角的平面角.

,∴.

在Rt△中,=

.

∴二面角的正切值是.

解法二:如图,以点为坐标原点,线段的垂直平分线所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系,令

,

. 

设平面的一个法向量为,

,得

,则,∴.   

平面,平面,

,∴.

是菱形,∴.

,∴平面.

是平面的一个法向量,

, 

∴二面角的正切值是.

20、解:圆的方程为,则其直径长,圆心为,设的方程为,即,代入抛物线方程得:,设

,  

…6分

,

因此.   

据等差,, 

所以,

即:方程为

21、解:(1)因为

所以,满足条件.  

又因为当时,,所以方程有实数根

所以函数是集合M中的元素.

(2)假设方程存在两个实数根),

不妨设,根据题意存在数

使得等式成立, 

因为,所以,与已知矛盾,

所以方程只有一个实数根;

(3)不妨设,因为所以为增函数,所以

  又因为,所以函数为减函数,

  所以

所以,即

所以. 

 

 


同步练习册答案