题目列表(包括答案和解析)
(本小题满分14分)
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米.
(Ⅰ)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?
|
(本小题满分14分)如图所示,某市政府决定在以政府大楼O为中心、正北方向
和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考
虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正
面要朝市政府大楼.设扇形的半径OM=R ,,OB与OM之间的夹角为
.
(1)将图书馆底面矩形ABCD的面积S表示成的函数.
(2)若 R=45 m,求当为何值时,矩形ABCD的面积S有最大值?
其最大值是多少?
(本小题满分14分)
如图所示,在矩形中,
的中点,O为AE的中点,以AE为折痕将△ADE向上折起,使D到P点位置,且
.
(Ⅰ)求证:
(Ⅱ)求二面角E-AP-B的余弦值.
(本小题满分14分)
如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,
,现将梯形沿CB、DA折起,使
且
,得一简单组合体
如图2示,已知
分别为
的中点.
图1 图2
(1)求证:平面
;
(2)求证:;
(3)当多长时,平面
与平面
所成的锐二面角为
?
(本小题满分14分)
如图①边长为1的正方形ABCD中,点E、F分别
为AB、BC的中点,将△BEF剪去,将
△AED、△DCF分别沿DE、DF折起,使A、
C两点重合于点P得一个三棱锥如图②示.
(1)求证:;
(2)求三棱锥的体积;
(3)求DE与平面PDF所成角的正弦值.
一、选择题
|