(Ⅰ)求x<0时.函数的解析式, (Ⅱ)求实数a的取值范围. 查看更多

 

题目列表(包括答案和解析)

 函数是定义在R上的奇函数,当

(Ⅰ)求x<0时,的解析式;

(Ⅱ)问是否存在这样的正数a,b,当的值域为?若存在,求出所有的a,b的值;若不存在说明理由.

 

 

 

 

 

 

 

 

 

查看答案和解析>>

本小题满分14分)

三次函数的图象如图所示,直线BD∥AC,且直线BD与函数图象切于点B,交于点D,直线AC与函数图象切于点C,交于点A.

(1)若函数f(x)为奇函数且过点(1,-3),当x<0时求的最大值 ;

(2)若函数在x=1处取得极值-2,试用c表示a和b,并求的单调递减区间;

(3)设点A、B、C、D的横坐标分别为

求证

 

查看答案和解析>>

(本小题满分12分)        

设有两个命题p:关于x的不等式a > 0,且a ≠ 1)的解集是{ x | x < 0 };

q:函数的定义域为R.如果为真命题,为假命题,

求实数a的取值范围.

 

查看答案和解析>>

f(x)是定义在R上的函数,对xy∈R都有f(xy)=f(x)+f(y),且当x>0时,f(x)<0,f(-1)=2.

(1)求证:f(x)为奇函数;

(2)求证:f(x)是R上的减函数;

(3)求f(x)在[-2,4]上的最值.

查看答案和解析>>

小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:O为起点,再从A1,A2,A3,A4,A5,A6(如图)6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,X>0就去打球,X=0就去唱歌,X<0就去下棋.

(1)写出数量积X的所有可能取值;

(2)分别求小波去下棋的概率和不去唱歌的概率.

 

查看答案和解析>>

一、选择题

1,3,5

2.B 利用数形结合求解,令的交点个数.

3.C 解析:取满足可得答案C.

4.B 解析:取答案各区间的特点值代入检验即可.

5.D 解析:B、C的函数周期为2,不合题意,A的函数在区间上为增函数,不合题意

6.D 解析:由a1=2知答案A不正确,再由a1+a2=S2=4a2­可得答案B、C不正确

7.A 解析:

     ,故选A.

8.A 解析:

     =2k+,故选A.

9.D 解析:满足

      ,故a的取值范围是,故选D.

10.B 解析:①、②正确,③、④错误,因为③、④中对于虚数的情况没有大小关系,故选B.

二、填空题

11.答案:1-i   解析:

12.答案:81     解析:

13.答案:   解析:∵,当且仅当时取等号.

14.答案:18     解析:每行的数字取值从(n-1)2+1到n2,而172<300<182,故300在第18行.

三、解答题:

15.解:∵

    ∴命题P为真时

命题P为假时

命题Q为真时,

命题Q为假时

由“P\/Q”为真且“P/\Q”为假,知P、Q有且只有一个正确.

情形(1):P正确,且Q不正确

情形(2):P不正确,且Q正确

综上,a取值范围是

另解:依题意,命题P为真时,0<a<1

曲线轴交于两点等价于

  故命题Q为真时,

由“P\/Q”为真且“P/\Q”为假,知P、Q有且只有一个正确.

等价于P、Q为真时在数轴表示图形中有且只有一个阴影的部分.

(注:如果答案中端点取了开区间,扣2分)

16.解:设此工厂应分别生产甲、乙两种产品x吨、y吨. 获得利润z万元

    作出可行域如右图

利润目标函数z=6x+12y

由几何意义知当直线l:z=6x+12y,经过可行域上的点M时,z=6x+12y取最大值.

解方程组 ,得M(20,24) 

答:生产甲种产品20t,乙种产品24t,才能使此工厂获得最大利润

17.解:(Ⅰ)∵A+B+C=180°

    由 

    ∴  

    整理,得      解得:  

    ∵    ∴C=60° 

(Ⅱ)由余弦定理得:c2=a2+b2-2abcosC,即7=a2+b2-2ab

=25-3ab 

  

18.解:(1)由条件得: 

(2)

∴6Tn=6+6×62+11×63+…+(5n-4)6n  ②

①-②:

 

19.解:设AM的长为x米(x>3)

  …………3分

(Ⅰ)由SAMPN>32得

即AM长的取值范围是(3,4)

(Ⅱ)令

∴当上单调递增,x<6,,函数在(3,6)上单调递减

∴当x=6时,取得最小值即SAMPN取得最小值24(平方米)

此时|AM|=6米,|AN|=4米 

    答:当AM、AN的长度分别是6米、4米时,矩形AMPN的面积最小,最小面积是24平方米.   

    另解:以AM、AN分别为x、y轴建立直角坐标系,

由C在直线MN上得

∴AM的长取值范围是(3,4)

(Ⅱ)∵时等号成立.

∴|AM|=6米,|AN|=4米时,SAMPN达到最小值24

答:当AM、AN的长度分别是6米、4米时,矩形AMPN的面积最小,最小面积是24平方米.

20.解:(1)设x<0,则-x>0

为偶函数,  ∴

(2)∵为偶函数,∴=0的根关于0对称.

=0恰有5个不同的实数解,知5个实根中有两个正根,二个负根,一个零根.

且两个正根和二个负根互为相反数

∴原命题图像与x轴恰有两个不同的交点

下面研究x>0时的情况

为单调增函数,故不可能有两实根

∴a>0  令

递减,

处取到极大值

又当

要使轴有两个交点当且仅当>0

解得,故实数a的取值范围(0,

方法二:

(2)∵为偶函数, ∴=0的根关于0对称.

=0恰有5个不同的实数解知5个实根中有两个正根,二个负根,一个零根.

且两个正根和二个负根互为相反数

∴原命题图像与x轴恰有两个不同的交点

下面研究x>0时的情况

与直线交点的个数.

∴当时,递增与直线y=ax下降或是x国,

故交点的个数为1,不合题意  ∴a>0

设切点

∴切线方为 

由切线与y=ax重合知

故实数a的取值范围为(0,

 

 

 

 

 


同步练习册答案