题目列表(包括答案和解析)
(本题满分15分)已知圆N:和抛物线C:
,圆的切线
与抛物线C交于不同的两点A,B,
(1)当直线的斜率为1时,求线段AB的长;
(2)设点M和点N关于直线对称,问是否存在直线
使得
?若存在,求出直线
的方程;若不存在,请说明理由.
(本小题满分12分)
已知椭圆的离心率为
,过右焦点F的直线
与C相交于A、B两点,当直线
的斜率为1时,坐标原点O到
的距离为
。
(1)求的值;
(2)椭圆C上是否存在点P,使得当绕F转到某一位置时,有
成立?若存在,求出所有的点P的坐标与
的方程;若不存在,说明理由
(本小题满分12分)
椭圆的离心率
,过右焦点
的直线
与椭圆
相交
于A、B两点,当直线的斜率为1时,坐标原点
到直线
的距离为
⑴求椭圆C的方程;
⑵椭圆C上是否存在点,使得当直线
绕点
转到某一位置时,有
成
立?若存在,求出所有满足条件的点的坐标及对应的直线方程;若不存在,请说明理由.
(本小题满分11分)已知抛物线关于
轴对称,它的顶点在坐标原点,并且经过点
。
(1)求抛物线的标准方程;
(2)若的三个顶点在抛物线
上,
且点
的横坐标为1,过点
分别作抛物线
的切线,两切线相交于点
,直线
与
轴交于点
,当直线
的斜率在
上变化时,直线
斜率是否存在最大值,若存在,求其最大值和直线
的方程;若不存在,请说明理由。
(本题14分)已知椭圆的中心在坐标原点,焦点在
轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点
与
轴不垂直的直线
交椭圆于
,
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当直线的斜率为1时,求
的面积;
(Ⅲ)在线段上是否存在点
,使得以
为邻边的平行四边形是菱形?
若存在,求出
的取值范围;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com