11.在等比数列 ,数列的前2n项和= . 查看更多

 

题目列表(包括答案和解析)

在等比数列         ;数列的前2n项和=          

查看答案和解析>>

在等比数列{an}中,已知a1+a2=90,a3+a4=60,则a5+a6=(    );数列{an}的前2n项和S2n=(    )。

查看答案和解析>>

等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列,
 
第一列
第二列
第三列
第一行
3
2
10
第二行
6
4
14
第三行
9
8
18
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:bn=an+(-1)lnan,求数列{bn}的前2n项和S2n

查看答案和解析>>

在数列{an}中,Sn为其前n项和,满足Sn=kan+n2-n(k∈R,n∈N*),
(Ⅰ)若k=1,求数列{an}的通项公式;
(Ⅱ)若数列{an-2n-1}为公比不为1的等比数列,求Sn

查看答案和解析>>

已知数列{an}满足:a1=n2+2n(其中常数λ>0,n∈N*),
(1)求数列{an}的通项公式;
(2)当λ=4时,是否存在互不相同的正整数r,s,t,使得ar,as,at成等比数列?若存在,给出r,s,t满足的条件;若不存在,说明理由;
(3)设Sn为数列{an}的前n项和,若对任意n∈N*,都有(1-λ)Sn+λan≥2λn恒成立,求实数λ的取值范围。

查看答案和解析>>

一、选择题

1.D   2.A   3.A   4.C    5.D   6.D   7.B   8.A

二、填空题

9.    10.    11.40;    12.7    13.3    14.①②③④

三、解答题

15.解:(1)设数列

由题意得:

解得:

   (2)依题

为首项为2,公比为4的等比数列

   (2)由

 

16.解:(1)

   (2)由

17.解法1:

设轮船的速度为x千米/小时(x>0),

则航行1公里的时间为小时。

依题意,设与速度有关的每小时燃料费用为

答:轮船的速度应定为每小时20公里,行驶1公里所需的费用总和最小。

解法2:

设轮船的速度为x千米/小时(x>0),

则航行1公里的时间为小时,

依题意,设与速度有关的每小时燃料费用为

元,

且当时等号成立。

答:轮船的速度应定为每小时20公里,行驶1公里所需的费用总和最小。

 

18.解:(1),半径为1依题设直线

    由圆C与l相切得:

   (2)设线段AB中点为

    代入即为所求的轨迹方程。

   (3)

   

 

   

    ∴异面直线CD与AP所成的角为60°

   (2)连结AC交BD于G,连结EG,

   

   (3)设平面,由

   

20.解:(1)设函数

    不妨设

   

   (2)时,


同步练习册答案