19. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

一、选择题

1.D   2.A   3.A   4.C    5.D   6.D   7.B   8.A

二、填空题

9.    10.    11.40;    12.7    13.3    14.①②③④

三、解答题

15.解:(1)设数列

由题意得:

解得:

   (2)依题

为首项为2,公比为4的等比数列

   (2)由

 

16.解:(1)

   (2)由

17.解法1:

设轮船的速度为x千米/小时(x>0),

则航行1公里的时间为小时。

依题意,设与速度有关的每小时燃料费用为

答:轮船的速度应定为每小时20公里,行驶1公里所需的费用总和最小。

解法2:

设轮船的速度为x千米/小时(x>0),

则航行1公里的时间为小时,

依题意,设与速度有关的每小时燃料费用为

元,

且当时等号成立。

答:轮船的速度应定为每小时20公里,行驶1公里所需的费用总和最小。

 

18.解:(1),半径为1依题设直线

    由圆C与l相切得:

   (2)设线段AB中点为

    代入即为所求的轨迹方程。

   (3)

   

 

   

    ∴异面直线CD与AP所成的角为60°

   (2)连结AC交BD于G,连结EG,

   

   (3)设平面,由

   

20.解:(1)设函数

    不妨设

   

   (2)时,


同步练习册答案