(1)求异面直线PA与CD所成的角, (2)求证:PC//平面EBD, (3)求二面角A―BE―D的余弦值. 查看更多

 

题目列表(包括答案和解析)

如图四棱锥P—ABCD,PD⊥平面ABCD,PA与平面ABCD成60°角,在四边形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.

(1)若PB中点为M,求证平面AMC⊥平面PBC;

(2)求异面直线PA与BC所成的角.

查看答案和解析>>

如图,四棱锥P—ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60°,在四边形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.

(1)建立适当的坐标系,并写出点B、P的坐标;

(2)求异面直线PA与BC所成的角;

(3)若PB的中点为M,求证:平面AMC⊥平面PBC.

查看答案和解析>>

如图,四棱锥PABCD中,PD⊥平面ABCDPA与平面ABCD所成的角为60°,在四边形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.

(1)建立适当的坐标系,并写出点BP的坐标;

(2)求异面直线PABC所成的角;

(3)若PB的中点为M,求证:平面AMC⊥平面PBC.

查看答案和解析>>

如图,四棱锥P桝BCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60°,在四边形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.

(1)建立适当的坐标系,并写出点B、P的坐标;

(2)求异面直线PA与BC所成的角;

(3)若PB的中点为M,求证:平面AMC⊥平面PBC.

查看答案和解析>>

如图,在四棱锥中,底面为矩形,.
(1)求证,并指出异面直线PA与CD所成角的大小;
(2)在棱上是否存在一点,使得?如果存在,求出此时三棱锥与四棱锥的体积比;如果不存在,请说明理由.

查看答案和解析>>

一、选择题

1.D   2.A   3.A   4.C    5.D   6.D   7.B   8.A

二、填空题

9.    10.    11.40;    12.7    13.3    14.①②③④

三、解答题

15.解:(1)设数列

由题意得:

解得:

   (2)依题

为首项为2,公比为4的等比数列

   (2)由

 

16.解:(1)

   (2)由

17.解法1:

设轮船的速度为x千米/小时(x>0),

则航行1公里的时间为小时。

依题意,设与速度有关的每小时燃料费用为

答:轮船的速度应定为每小时20公里,行驶1公里所需的费用总和最小。

解法2:

设轮船的速度为x千米/小时(x>0),

则航行1公里的时间为小时,

依题意,设与速度有关的每小时燃料费用为

元,

且当时等号成立。

答:轮船的速度应定为每小时20公里,行驶1公里所需的费用总和最小。

 

18.解:(1),半径为1依题设直线

    由圆C与l相切得:

   (2)设线段AB中点为

    代入即为所求的轨迹方程。

   (3)

   

 

   

    ∴异面直线CD与AP所成的角为60°

   (2)连结AC交BD于G,连结EG,

   

   (3)设平面,由

   

20.解:(1)设函数

    不妨设

   

   (2)时,


同步练习册答案