设函数的图象关于原点对称.的图象在点处的切线的斜率为.且当时有极值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称,且当x∈[ 2,3 ] 时, 222233

(1)求的解析式;

(2)若上为增函数,求的取值范围;

(3)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

(本小题满分14分)

设关于的函数,其中上的常数,若函数处取得极大值

(Ⅰ)求实数的值;

(Ⅱ)若函数的图象与直线有两个交点,求实数的取值范围;

(Ⅲ)设函数,若对任意地恒成立,求实数的取值范围.

 

查看答案和解析>>

(本小题满分14分)

  已知:函数),

  (1)若函数图象上的点到直线距离的最小值为,求的值;

  (2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;

  (3)对于函数定义域上的任意实数,若存在常数,使得不等式都成立,则称直线为函数的“分界线”。设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分14分)

已知关于x的函数,其导函数.

(1)如果函数试确定b、c的值;

(2)设当时,函数的图象上任一点P处的切线斜率为k,若,求实数b的取值范围。

 

 

查看答案和解析>>

(本小题满分14分)某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y(件)与销售单价x(元)之间的关系可近似看作一次函数ykxb(k≠0),函数图象如图所示.

(1)根据图象,求一次函数ykxb(k≠0)的表达式;

(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

 

 

查看答案和解析>>

题号

答案

1.解析:命题“”的否命题是:“”,故选C.

2.解析:由已知,得:,故选

3.解析:若,则,解得.故选

4.解析:由题意得,又

故选

5.解析:设成绩为环的人数是,由平均数的概念,得:

故选

6.解析:是偶函数;是指数函数;是对数函数.故选

7.解析:①的三视图均为正方形;②的三视图中正视图.侧视图为相同的等腰三角形,俯视图为圆;④的三视图中正视图.侧视图为相同的等腰三角形,俯视图为正方形.故选

8.解析:程序的运行结果是,选

9.解析:的图象先向左平移,横坐标变为原来的.答案:

10.解析:特殊值法:令,有.故选

 

题号

11

12

13

14

15

答案

11.解析:

12.解析:令,则,令,则

同理得即当时,的值以为周期,

所以

13.解析:由图象知:当函数的图象过点时,

取得最大值为2.

14. (坐标系与参数方程选做题)解析:将极坐标方程转化成直角坐标方程,圆上的动点到直线的距离的最大值就是圆心到直线的距离再加上半径.故填

15. (几何证明选讲选做题)解析:连结

则在中:

,所以

三.解答题:本大题共6小题,满分80分.解答须写出文字说明.证明过程和演算步骤.

16.析:主要考察三角形中的边角关系、向量的坐标运算、二次函数的最值.

解:(Ⅰ)∵,∴,     ………………3分

又∵,∴.    ……………………………………………5分

(Ⅱ)   ……………………………………………6分

,  ………………………8分

,∴.   ……………10分

∴当时,取得最小值为.   …………12分

 

17.析:主要考察立体几何中的位置关系、体积.

解:(Ⅰ)证明:连结,则//,   …………1分

是正方形,∴.∵,∴

,∴.    ………………4分

,∴

.  …………………………………………5分

(Ⅱ)证明:作的中点F,连结

的中点,∴

∴四边形是平行四边形,∴ . ………7分

的中点,∴

,∴

∴四边形是平行四边形,//

∴平面.  …………………………………9分

平面,∴.  ………………10分

(3). ……………………………11分

.  ……………………………14分

 

18.析:主要考察事件的运算、古典概型.

解:设“朋友乘火车、轮船、汽车、飞机来”分别为事件,则,且事件之间是互斥的.

(Ⅰ)他乘火车或飞机来的概率为………4分

(Ⅱ)他乘轮船来的概率是

所以他不乘轮船来的概率为. ………………8分 

(Ⅲ)由于

所以他可能是乘飞机来也可能是乘火车或汽车来的. …………………12分 

19.析:主要考察函数的图象与性质,导数的应用.

解:(Ⅰ)由函数的图象关于原点对称,得,………………1分

,∴. …………2分

,∴. ……………………………4分

,即.  ……………………6分

. ……………………………………………………7分

 (Ⅱ)由(Ⅰ)知,∴

,∴.   …………………9分

0

+

0

极小

极大

.  ………………………14分

 

20.析:主要考察直线.圆的方程,直线与圆的位置关系.

解:(Ⅰ)(法一)∵点在圆上,    …………………………2分

∴直线的方程为,即.   ……………………………5分

(法二)当直线垂直轴时,不符合题意.     ……………………………2分

当直线轴不垂直时,设直线的方程为,即

则圆心到直线的距离,即:,解得,……4分

∴直线的方程为.    ……………………………………………5分

(Ⅱ)设圆,∵圆过原点,∴

∴圆的方程为.…………………………7分

∵圆被直线截得的弦长为,∴圆心到直线的距离:

.   …………………………………………9分

整理得:,解得. ……………………………10分

,∴.   …………………………………………………………13分

∴圆.  ……………………………………14分

 

21.析:主要考察等差、等比数列的定义、式,求数列的和的方法.

解:(Ⅰ)设的公差为,则:

,∴,∴. ………………………2分

.  …………………………………………4分

(Ⅱ)当时,,由,得.     …………………5分

时,

,即.  …………………………7分

  ∴.   ……………………………………………………………8分

是以为首项,为公比的等比数列. …………………………………9分

(Ⅲ)由(2)可知:.   ……………………………10分

. …………………………………11分

.    ………………………………………13分

.  …………………………………………………14分


同步练习册答案