求(1)函数的最大值及取得最大值的自变量的集合, 查看更多

 

题目列表(包括答案和解析)

设函数的最高点D的坐标为(,2),由最高点D运动到相邻最低点时,函数图象与x的交点的坐标为(,0)。
(1)求函数的解析式;
(2)当时,求函数的最大值和最小值以及分别取得最大值和最小值时相应的自变量x的值;
(3)将函数的图象向右平移个单位,得到函数的图象,求函数的单调减区间。

查看答案和解析>>

已知函数f(x)=2+sin2x+cos2x,x∈R.
(1)求函数f(x)的最大值及取得最大值的自变量x的集合;
(2)求函数f(x)的单调增区间.

查看答案和解析>>

已知函数y=
1
2
cos2x+
3
2
sinxcosx+1
,x∈R.
(1)求最大值,及当函数y取得最大值时,求自变量x的集合;
(2)求函数的对称轴方程
(3)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?

查看答案和解析>>

已知函数f(x)=elnx+
k
x
(e为自然对数的底,k为正数),
(Ⅰ)若f(x)在x=x0处取得极值,且x0是f(x)的一个零点,求k及xo的值;
(Ⅱ)在(Ⅰ)条件下,求f(x)在[
1
e2
,e]上的最大值;
(Ⅲ)设g(x)=f(x)-kx在区间(0,+∞)上不是单调函数,求k的取值范围.

查看答案和解析>>

已知函数f(x)=
2
•sin(2x+
π
3
)
,求
(1)函数f(x)的最大值及取得最大值的自变量x的集合和周期;
(2)函数f(x)的单调增区间.

查看答案和解析>>

一、选择题:(每小题5分, 共50分)

1――5  A   A  C  D  C            6. ――10  C  B . B  C  B

 

二、填空题(每题5分,共20分)

11. 2   12.    

13.    14. -2

三、解答题:本大题共6小题,共80分,解答应写出文字说明、演算步骤或推证过程。

15.(本小题满分12分)

解:(1)  

(2)

   而函数f(x)是定义在上为增函数

       

   即原不等式的解集为

16. 解:….4分

(1)的最小正周期为;。。。。8分

(2)因为,即,即 。。。。12分

17. (1)当有最小值为。…….7分

   (2)当,使函数恒成立时,故。。。。14分

18. (I)解法一:

……4分

,即时,取得最大值

因此,取得最大值的自变量x的集合是.……8分

解法二:

……4分

,即时,取得最大值.

因此,取得最大值的自变量x的集合是……8分

(Ⅱ)解:

由题意得,即.

因此,的单调增区间是.…………12分

 

 

19. 解 (1)设该厂的月获利为y,依题意得?。。。。2分

y=(160-2x)x-(500+30x)=-2x2+130x-500。。。。。4分

y≥1300知-2x2+130x-500≥1300

x2-65x+900≤0,∴(x-20)(x-45)≤0,解得20≤x≤45。。。。6分

∴当月产量在20~45件之间时,月获利不少于1300元。。。。。。7分

(2)由(1)知y=-2x2+130x-500=-2(x)2+16125。。。。。。9分

x为正整数,∴x=32或33时,y取得最大值为1612元,。。。12分

∴当月产量为32件或33件时,可获得最大利润1612元。。。。。14分

20. 解  (1)当a=1,b=?2时,f(x)=x2?x?3,。。。。2分

由题意可知x=x2?x?3,得x1=?1,x2=3  。。。。6分

故当a=1,b=?2时,f(x)的两个不动点为?1,3  。。。。7分

(2)∵f(x)=ax2+(b+1)x+(b?1)(a≠0)恒有两个不动点,

x=ax2+(b+1)x+(b?1),

ax2+bx+(b?1)=0恒有两相异实根。。。。。9分

∴Δ=b2?4ab+4a>0(bR)恒成立  。。。。。11分

于是Δ′=(4a)2?16a<0解得0<a<1。。。。13分

故当bRf(x)恒有两个相异的不动点时,0<a<1  。。。。。。14分

 

 

 

 


同步练习册答案