题目列表(包括答案和解析)
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点 已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0)
(1)若a=1,b=–2时,求f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图像上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+对称,求b的最小值.
已知函数f(x)=,
(1)试问f(x)有无“滞点”?若有求之,否则说明理由;
(2)已知数列{an}的各项均为负数,且满足4Sn·f()=1,求数列{an}的通项公式;
(3)已知bn=an·2n,求{bn}的前n项和Tn.
(1)当a=1,b=-2时,求函数f(x)的不动点;?
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;?
(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+对称,求b的最小值.
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数
f(x)=ax2+bx+1(a>0)有两个相异的不动点x1,x2.
⑴若x1<1<x2,且f(x)的图象关于直线x=m对称,求证:<m<1;
⑵若|x1|<2且|x1-x2|=2,求b的取值范围.
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.
一、选择题:(每小题5分, 共50分)
1――
二、填空题(每题5分,共20分)
11. 2 12.
13. 14. -2
三、解答题:本大题共6小题,共80分,解答应写出文字说明、演算步骤或推证过程。
15.(本小题满分12分)
解:(1)
(2)
而函数f(x)是定义在上为增函数
即原不等式的解集为
16. 解:….4分
(1)的最小正周期为;。。。。8分
(2)因为,即,即 。。。。12分
17. (1)当有最小值为。…….7分
(2)当,使函数恒成立时,故。。。。14分
18. (I)解法一:
……4分
当,即时,取得最大值
因此,取得最大值的自变量x的集合是.……8分
解法二:
……4分
当,即时,取得最大值.
因此,取得最大值的自变量x的集合是……8分
(Ⅱ)解:
由题意得,即.
因此,的单调增区间是.…………12分
19. 解 (1)设该厂的月获利为y,依题意得?。。。。2分
y=(160-2x)x-(500+30x)=-2x2+130x-500。。。。。4分
由y≥1300知-2x2+130x-500≥1300
∴x2-65x+900≤0,∴(x-20)(x-45)≤0,解得20≤x≤45。。。。6分
∴当月产量在20~45件之间时,月获利不少于1300元。。。。。。7分
(2)由(1)知y=-2x2+130x-500=-2(x-)2+16125。。。。。。9分
∵x为正整数,∴x=32或33时,y取得最大值为1612元,。。。12分
∴当月产量为32件或33件时,可获得最大利润1612元。。。。。14分
20. 解 (1)当a=1,b=?2时,f(x)=x2?x?3,。。。。2分
由题意可知x=x2?x?3,得x1=?1,x2=3 。。。。6分
故当a=1,b=?2时,f(x)的两个不动点为?1,3 。。。。7分
(2)∵f(x)=ax2+(b+1)x+(b?1)(a≠0)恒有两个不动点,
∴x=ax2+(b+1)x+(b?1),
即ax2+bx+(b?1)=0恒有两相异实根。。。。。9分
∴Δ=b2?4ab+
于是Δ′=(
故当b∈R,f(x)恒有两个相异的不动点时,0<a<1 。。。。。。14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com