由于,故(2)式等号不成立.这与式矛盾. 所以ㄓ不可能为等腰三角形..14分 查看更多

 

题目列表(包括答案和解析)

已知正项数列的前n项和满足:

(1)求数列的通项和前n项和

(2)求数列的前n项和

(3)证明:不等式  对任意的都成立.

【解析】第一问中,由于所以

两式作差,然后得到

从而得到结论

第二问中,利用裂项求和的思想得到结论。

第三问中,

       

结合放缩法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正项数列,∴           ∴ 

又n=1时,

   ∴数列是以1为首项,2为公差的等差数列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        

   ∴不等式  对任意的都成立.

 

查看答案和解析>>

已知幂函数满足

(1)求实数k的值,并写出相应的函数的解析式;

(2)对于(1)中的函数,试判断是否存在正数m,使函数,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。

【解析】本试题主要考查了函数的解析式的求解和函数的最值的运用。第一问中利用,幂函数满足,得到

因为,所以k=0,或k=1,故解析式为

(2)由(1)知,,因此抛物线开口向下,对称轴方程为:,结合二次函数的对称轴,和开口求解最大值为5.,得到

(1)对于幂函数满足

因此,解得,………………3分

因为,所以k=0,或k=1,当k=0时,

当k=1时,,综上所述,k的值为0或1,。………………6分

(2)函数,………………7分

由此要求,因此抛物线开口向下,对称轴方程为:

时,,因为在区间上的最大值为5,

所以,或…………………………………………10分

解得满足题意

 

查看答案和解析>>

已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。

第一问中,可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

第二问中,

假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得

代入1,2式中得到范围。

(Ⅰ) 可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

 (Ⅱ) 假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是

 

查看答案和解析>>

如图,在柱坐标系中,长方体的两个顶点坐标为A1(4,0,5),C1(6,分 π2式,5),则此长方体外接球的体积为________.

查看答案和解析>>

为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 

 

喜爱打羽毛球

不喜爱打羽毛球

合计

男生

 

5

 

女生

10

 

 

 

 

 

50

 

 

 

 

 

已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率

(1)请将上面的列联表补充完整;

(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;

(3)已知喜爱打羽毛球的10位女生中,还喜欢打篮球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生不全被选中的概率.下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 

 

 

 

(参考公式:其中.)

【解析】第一问利用数据写出列联表

第二问利用公式计算的得到结论。

第三问中,从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:

 

基本事件的总数为8

表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于 2个基本事件由对立事件的概率公式得

解:(1) 列联表补充如下:

 

 

喜爱打羽毛球

不喜爱打羽毛球

合计

男生

20

25

女生

10

15

25

合计

30

20

50

(2)∵

∴有99.5%的把握认为喜爱打篮球与性别有关

(3)从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:

 

基本事件的总数为8,

表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于 2个基本事件由对立事件的概率公式得.

 

查看答案和解析>>


同步练习册答案