记表中的第一列数...- .构成数列. 查看更多

 

题目列表(包括答案和解析)

将数列{an} 中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
①在数列{bn} 中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
数学公式.请解答以下问题:
(1)求数列{bn} 的通项公式;
(2)求上表中第k(k∈N*)行所有项的和S(k);
(3)若关于x的不等式数学公式数学公式上有解,求正整数k的取值范围.

查看答案和解析>>

将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:

a1

aa3

a4   a5  a6

a7  a8   a9    a10记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足=1(n≥2).

(Ⅰ)证明数列成等差数列,并求数列{bn}的通项公式;

(Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数,当时,求上表中第k(k≥3)行所有项的和.

查看答案和解析>>

将正数数列中的所有项按每一行比上一行多一项的规则排成数表,如图所示。记表中各行的第一个数构成数列为,各行的最后一个数构成数列为,第行所有数的和为。已知数列是公差为的等差数列,从第二行起,每一行中的数按照从左到右的顺序每一个数与它前面一个数的比是常数,且.

(1)求数列的通项公式。

(2)求数列的前项和的表达式.

查看答案和解析>>

将正数数列中的所有项按每一行比上一行多一项的规则排成数表,如图所示。记表中各行的第一个数构成数列为,各行的最后一个数构成数列为,第行所有数的和为。已知数列是公差为的等差数列,从第二行起,每一行中的数按照从左到右的顺序每一个数与它前面一个数的比是常数,且.

(1)求数列的通项公式。

(2)求数列的前项和的表达式.

查看答案和解析>>

将正数数列中的所有项按每一行比上一行多一项的规则排成数表,如图所示。记表中各行的第一个数构成数列为,各行的最后一个数构成数列为,第行所有数的和为。已知数列是公差为的等差数列,从第二行起,每一行中的数按照从左到右的顺序每一个数与它前面一个数的比是常数,且.

(1)求数列的通项公式。

(2)(理科)记

求证:

查看答案和解析>>

一.填空题:

1.;    2.;                 3.       4.2;           5.

6. ;   7.;  8.3;          9.;     10.

二.选择题:11.B ;     12.C;     13.C.

三.解答题:

14.[解](Ⅰ)方法一(综合法)设线段的中点为,连接

为异面直线OC与所成的角(或其补角)  ………………………………..1分

       由已知,可得

为直角三角形       ……………………………………………………………….1分

,  ……………………………………………………………….4分

所以,异面直线OC与MD所成角的大小.   …………………………..1分

方法二(向量法)

以AB,AD,AO所在直线为轴建立坐标系,

, ……………………………………………………2分

, ………………………………………………………………………………..1分

 设异面直线OC与MD所成角为

.……………………………….. …………………………2分

 OC与MD所成角的大小为.…………………………………………………1分

(Ⅱ)方法一(综合法)

, ……………………………………………………………………………1分

平面

平面 ………………………………………………………………………………4分

所以,点到平面的距离 …………………………………………………2分

方法二(向量法)

设平面的一个法向量

…………………………………………………………………2分

……………………………………………………………………………………….2分

到平面的距离为

.……………………………………………………………………3分

15.[解](Ⅰ)设“小明中一等奖”为事件 ,“小辉中一等奖”为事件 ,事件与事件相互独立,他们俩都中一等奖,则

所以,购买两张这种彩票都中一等奖的概率为. ………………………………..4分

(Ⅱ)事件的含义是“买这种彩票中奖”,或“买这种彩票中一等奖或中二等奖”…1分

显然,事件A与事件B互斥,

所以, ………………………………..3分

故购买一张这种彩票能中奖的概率为.……………………………………………………..1分

(Ⅲ)对应不中奖、中二等奖、中一等奖,的分布列如下:

 

…………………………………………..………………………………………………….3分

购买一张这种彩票的期望收益为损失元.…………………………………………………..3分

16.[解] (Ⅰ)由于恒成立,所以函数的定义域为………………..2分

(1)当时,函数,函数的值域为…………………………1分

(2)当时,因为,所以

,从而,………………………………………………..3分

所以函数的值域为.   ……………………………………………………….1分

(Ⅱ)假设函数是奇函数,则,对于任意的,有成立,

时,函数是奇函数.  …………………………………………………….2分

时,函数是偶函数.  ………………………………………………..2分

,且时,函数是非奇非偶函数.  ………………………………….1分

对于任意的,且

………………………………………..3分

所以,当时,函数是常函数   ………………………………………..1分

时,函数是递减函数.   ………………………………………..1分

17.[解](Ⅰ)由题意,……………………………6分

(Ⅱ)解法1:由

因此,可猜测)     ………………………………………………………4分

代入原式左端得

左端

即原式成立,故为数列的通项.……………………………………………………….3分

用数学归纳法证明得3分

解法2:由

,且

,……… ……………………………………………………………..4分

所以

因此,...,

将各式相乘得………………………………………………………………………………3分

(Ⅲ)设上表中每行的公比都为,且.因为

所以表中第1行至第9行共含有数列的前63项,故在表中第10行第三列,………2分

因此.又,所以. …………………………………..3分

…………………………………………2分

18.[解](Ⅰ)动点的轨迹是以为原点,以3为半径的球面 ……………………………1分

并设动点的坐标为,动点满足

则球面的方程为. …………………………………………………4分

(Ⅱ)设动点,则

所以  ……………………………………………………………5分

整理得曲面的方程:      (*)   …………………………………………2分

若坐标系原点建在平面上的点处,可得曲面的方程:同样得分.

(Ⅲ)(1)对称性:由于点关于平面的对称点、关于平面的对称点均满足方程(*),所以曲面关于平面与平面对称.  …………………2分

又由于点关于轴的对称点满足方程(*),所以曲面关于轴对称.

(2)范围:由于,所以,,即曲面平面上方.  ………………2分

文本框:  (3)顶点:令,得,即坐标原点在曲面上,点是曲面的顶点.  …2分

 

 

…………………………2分

 

 

 

 

 

 


同步练习册答案