在直角坐标系中将曲线C1:xy=绕原点按逆时针方向旋转30°后得到曲线C2.则曲线C2截y轴所得的弦长为 . 14.已知不等式|2x-4|+|3x+3|+2|x-1|+2a-3<0的解集非空.则实数a的取值范围为 查看更多

 

题目列表(包括答案和解析)

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
7-6
4-3
,向量
ξ 
=
6
5

(I)求矩阵M的特征值λ1、λ2和特征向量
ξ
1
ξ2

(II)求M6
ξ
的值.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
x=2cosα
y=sinα
(α为参数)
.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
π
4
)=2
2

(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)选修4-5:不等式选讲
(Ⅰ)已知:a、b、c∈R+,求证:a2+b2+c2
1
3
(a+b+c)2
;    
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
求矩阵A=
2,1
3,0
的特征值及对应的特征向量.
(2)选修4一4:坐标系与参数方程
已知直线l的参数方程:
x=t
y=1+2t
(t为参数)和圆C的极坐标方程:ρ=2
2
sin(θ+
π
4
)

(Ⅰ)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
(Ⅱ)判断直线l和圆C的位置关系.
(3)选修4一5:不等式选讲
已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求实数x的范围.

查看答案和解析>>

CACD CCBA

9、      10、2:1      11、    12、      13、4

14、a<-1   15、

 

16、17、解:(I)依题意

                                                            …………2分

      

                                                                    …………4分

         bn=8+8×(n-1)=8n                                   …………5分

(II)                   …………6分

                

 

                                                    …………12分

18、(1)3

(2)底面边长为2,高为4是,体积最大,最大体积为16

19、

略解、(1)因为f′(x)=3ax2+2x-1,依题意存在(2,+∞)的非空子区间使3ax2+2x-1>0成立,即 在x∈(2,+∞)某子区间上恒成立,令h(x)=,求得h(x)的最小值为,故

(2)由已知a>0

令f′(x)=3ax2+2x-1>0

故f(x)在区间()上是减函数, 即f(x)在区间()上恒大于零。故当a>0时,函数在f(x)在区间()上不存在零点

20、(1)f(1)=3………………………………………………………………………………(1分)

        f(2)=6………………………………………………………………………………(2分)

        当x=1时,y=2n,可取格点2n个;当x=2时,y=n,可取格点n个

        ∴f(n)=3n…………………………………………………………………………(4分)

  

   (2)………………………………………………(9分)

       

        ∴T1<T2=T3>T4>…>Tn

        故Tn的最大值是T2=T3=

        ∴m≥………………………………………………………………()

 

 

21、解:(Ⅰ)设,

,      …………………2分

                   …………………3分

.                 ………………………………………………4分

∴动点M的轨迹C是以O(0,0)为顶点,以(1,0)为焦点的抛物线(除去原点).

             …………………………………………5分

(Ⅱ)解法一:(1)当直线垂直于轴时,根据抛物线的对称性,有

                                                         ……………6分

(2)当直线轴不垂直时,依题意,可设直线的方程为,则AB两点的坐标满足方程组

消去并整理,得

,

.   ……………7分

设直线AEBE的斜率分别为,则:

.  …………………9分

,

,

.

综合(1)、(2)可知.                  …………………10分

解法二:依题意,设直线的方程为,则AB两点的坐标满足方程组:

消去并整理,得

,

. ……………7分

设直线AEBE的斜率分别为,则:

.  …………………9分

,

,

.        ……………………………………………………10分

(Ⅲ)假设存在满足条件的直线,其方程为AD的中点为AD为直径的圆相交于点FGFG的中点为H,则点的坐标为.

,

,

 .                  …………………………12分

,

,得

此时,.

∴当,即时,(定值).

∴当时,满足条件的直线存在,其方程为;当时,满足条件的直线不存在.    

 

 

 


同步练习册答案