如图.在⊙O中.AB为直径.AD为弦.过B点的切线与AD的延长线交于点C.且AD=DC.则sin∠ACO= 查看更多

 

题目列表(包括答案和解析)

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2sin(),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2sin(),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2
sin(θ-
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

CACD CCBA

9、      10、2:1      11、    12、      13、4

14、a<-1   15、

 

16、17、解:(I)依题意

                                                            …………2分

      

                                                                    …………4分

         bn=8+8×(n-1)=8n                                   …………5分

(II)                   …………6分

                

 

                                                    …………12分

18、(1)3

(2)底面边长为2,高为4是,体积最大,最大体积为16

19、

略解、(1)因为f′(x)=3ax2+2x-1,依题意存在(2,+∞)的非空子区间使3ax2+2x-1>0成立,即 在x∈(2,+∞)某子区间上恒成立,令h(x)=,求得h(x)的最小值为,故

(2)由已知a>0

令f′(x)=3ax2+2x-1>0

故f(x)在区间()上是减函数, 即f(x)在区间()上恒大于零。故当a>0时,函数在f(x)在区间()上不存在零点

20、(1)f(1)=3………………………………………………………………………………(1分)

        f(2)=6………………………………………………………………………………(2分)

        当x=1时,y=2n,可取格点2n个;当x=2时,y=n,可取格点n个

        ∴f(n)=3n…………………………………………………………………………(4分)

  

   (2)………………………………………………(9分)

       

        ∴T1<T2=T3>T4>…>Tn

        故Tn的最大值是T2=T3=

        ∴m≥………………………………………………………………()

 

 

21、解:(Ⅰ)设,

,      …………………2分

                   …………………3分

.                 ………………………………………………4分

∴动点M的轨迹C是以O(0,0)为顶点,以(1,0)为焦点的抛物线(除去原点).

             …………………………………………5分

(Ⅱ)解法一:(1)当直线垂直于轴时,根据抛物线的对称性,有

                                                         ……………6分

(2)当直线轴不垂直时,依题意,可设直线的方程为,则AB两点的坐标满足方程组

消去并整理,得

,

.   ……………7分

设直线AEBE的斜率分别为,则:

.  …………………9分

,

,

.

综合(1)、(2)可知.                  …………………10分

解法二:依题意,设直线的方程为,则AB两点的坐标满足方程组:

消去并整理,得

,

. ……………7分

设直线AEBE的斜率分别为,则:

.  …………………9分

,

,

.        ……………………………………………………10分

(Ⅲ)假设存在满足条件的直线,其方程为AD的中点为AD为直径的圆相交于点FGFG的中点为H,则点的坐标为.

,

,

 .                  …………………………12分

,

,得

此时,.

∴当,即时,(定值).

∴当时,满足条件的直线存在,其方程为;当时,满足条件的直线不存在.    

 

 

 


同步练习册答案