可看作是关于的一元二次方程有等根的条件,在进一步观察这个方程,它的两个相等实根是1 ,根据韦达定理就有:
证明 当时,等式
例5 若
思路分析 此题一般是通过因式分解来证。但是,如果注意观察已知条件的特点,不难发现它与一元二次方程的判别式相似。于是,我们联想到借助一元二次方程的知识来证题。
故应选择(B)
思维障碍 有的学生可能觉得此题条件太少,难以下手,原因是对三角函数的基本公式掌握得不牢固,不能准确把握公式的特征,因而不能很快联想到运用基本公式。
且
解 为钝角,.在中
思路分析 此题是在中确定三角函数的值。因此,联想到三角函数正切的两角和公式可得下面解法。
例4 在中,若为钝角,则的值
(A) 等于1 (B)小于1 (C) 大于1 (D) 不能确定
思维障碍 有些同学对比较与的大小,只想到求出它们的值。而此题函数的表达式不确定无法代值,所以无法比较。出现这种情况的原因,是没有充分挖掘已知条件的含义,因而思维受到阻碍,做题时要全面看问题,对每一个已知条件都要仔细推敲,找出它的真正含义,这样才能顺利解题。提高思维的变通性。
(2) 联想能力的训练
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com