0  1023  1031  1037  1041  1047  1049  1053  1059  1061  1067  1073  1077  1079  1083  1089  1091  1097  1101  1103  1107  1109  1113  1115  1117  1118  1119  1121  1122  1123  1125  1127  1131  1133  1137  1139  1143  1149  1151  1157  1161  1163  1167  1173  1179  1181  1187  1191  1193  1199  1203  1209  1217  447090 

17.(本小题满分13分)

已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。

(Ⅰ)、求数列的通项公式;

(Ⅱ)、设,是数列的前n项和,求使得对所有都成立的最小正整数m;

点评:本小题考查二次函数、等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题的能力和推理能力。

解:(Ⅰ)设这二次函数f(x)=ax2+bx (a≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x-2,得

a=3 ,  b=-2, 所以  f(x)=3x2-2x.

又因为点均在函数的图像上,所以=3n2-2n.

试题详情

16.(本小题满分12分)

设函数,其中向量,,,。

(Ⅰ)、求函数的最大值和最小正周期;

(Ⅱ)、将函数的图像按向量平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的。

   点评:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力。

   解:(Ⅰ)由题意得,f(x)=a?(b+c)=(sinx,-cosx)?(sinx-cosx,sinx-3cosx)

               =sin2x-2sinxcosx+3cos2x=2+cos2x-sin2x=2+sin(2x+).

所以,f(x)的最大值为2+,最小正周期是=.

(Ⅱ)由sin(2x+)=0得2x+=k.,即x=,k∈Z,

于是d=(,-2),k∈Z.

因为k为整数,要使最小,则只有k=1,此时d=(?,?2)即为所求.

试题详情

15.将杨辉三角中的每一个数都换成,就得到一个如右图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中   r1  。令,则       

试题详情

14.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是 20   。(用数字作答)

试题详情

13.已知直线与圆相切,则的值为 188

试题详情

12.接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为  0.94    。(精确到0.01)

试题详情

11.设为实数,且,则  4        

试题详情

第Ⅱ卷用0.5毫米黑色的签字笔或黑色墨水钢笔直接答在答题卡上。答在试题卷上无效。

试题详情

10.关于的方程,给出下列四个命题:    ( A )

①存在实数,使得方程恰有2个不同的实根;

②存在实数,使得方程恰有4个不同的实根;

③存在实数,使得方程恰有5个不同的实根;

④存在实数,使得方程恰有8个不同的实根;

其中命题的个数是

A.0    B.1    C.2    D.3

 

第Ⅱ卷(非选择题   共100分)

注意事项:

试题详情

9.已知平面区域D由以为顶点的三角形内部&边界组成。若在区域D上有无穷多个点可使目标函数取得最小值,则 (C )

A.-2    B.-1    C.1    D.4

试题详情


同步练习册答案