0  1024  1032  1038  1042  1048  1050  1054  1060  1062  1068  1074  1078  1080  1084  1090  1092  1098  1102  1104  1108  1110  1114  1116  1118  1119  1120  1122  1123  1124  1126  1128  1132  1134  1138  1140  1144  1150  1152  1158  1162  1164  1168  1174  1180  1182  1188  1192  1194  1200  1204  1210  1218  447090 

0.8849

试题详情

19.(本小题满分10分)

在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。

(Ⅰ)、试问此次参赛学生总数约为多少人?

(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?

可共查阅的(部分)标准正态分布表

0

1

2

3

4

5

6

7

8

9

试题详情

因此,要使(1-)<()成立的m,必须且仅须满足≤,即m≥10,所以满足要求的最小正整数m为10.

 

如图,在棱长为1的正方体中,是侧棱上的一点,。

(Ⅰ)、试确定,使直线与平面所成角的正切值为;

(Ⅱ)、在线段上是否存在一个定点Q,使得对任意的,D1Q在平面上的射影垂直于,并证明你的结论。

点评:本小题主要考查线面关系、直线于平面所成的角的有关知识及空间想象能力和推理运算能力,考查运用向量知识解决数学问题的能力。

解法1:(Ⅰ)连AC,设AC与BD相交于点O,AP与平面相交于点,,连结OG,因为

PC∥平面,平面∩平面APC=OG,

故OG∥PC,所以,OG=PC=.

又AO⊥BD,AO⊥BB1,所以AO⊥平面,

故∠AGO是AP与平面所成的角.

在Rt△AOG中,tanAGO=,即m=.

所以,当m=时,直线AP与平面所成的角的正切值为.

(Ⅱ)可以推测,点Q应当是AICI的中点O1,因为

D1O1⊥A1C1, 且 D1O1⊥A1A ,所以 D1O1⊥平面ACC1A1

又AP平面ACC1A1,故 D1O1⊥AP.

那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直。

试题详情

当n≥2时,an=Sn-Sn-1=(3n2-2n)-=6n-5.

当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()

(Ⅱ)由(Ⅰ)得知==,

故Tn===(1-).

试题详情


同步练习册答案