7.正方体外接球的体积是,则外接球的半径R=2, 正方体的对角线的长为4,棱长等于,选D
6.由函数解得(y≠1),∴ 原函数的反函数是.
5.全集且
∴ =,选C.
4.已知则,=,选A.
3.若,则,α不一定等于;而若则tanα=1,∴ 是的必要不而充分条件,选B.
2.在等差数列中,已知∴ d=3,a5=14,=3a5=42,选B.
1.两条直线和互相垂直,则,∴ a=-1,选D.
答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升。
(20)本小题主要考查直线、圆、椭圆和不等式等基本知识,考查平面解析几何的基本方法,考查运算能力和综合解题能力。满分12分。
解:(I)
圆过点O、F,
圆心M在直线上。
设则圆半径
由得
解得
所求圆的方程为
(II)设直线AB的方程为
代入整理得
直线AB过椭圆的左焦点F,方程有两个不等实根。
记中点
则
的垂直平分线NG的方程为
令得
点G横坐标的取值范围为
(21)本小题主要考查函数的单调性、极值、最值等基本知识,考查运用导数研究函数性质
的方法,考查运算能力,考查函数与方程、数形结合、分类与整合等数学思想方法和分析问题、解决问题的能力。满分12分。
解:(I)
当即时,在上单调递增,
当即时,
当时,在上单调递减,
综上,
(II)函数的图象与的图象有且只有三个不同的交点,即函数
的图象与轴的正半轴有且只有三个不同的交点。
当时,是增函数;
当时,是减函数;
当时,是增函数;
当或时,
当充分接近0时,当充分大时,
要使的图象与轴正半轴有三个不同的交点,必须且只须
即
所以存在实数,使得函数与的图象有且只有三个不同的交点,的取值范围为
(22)本小题主要考查数列、不等式等基本知识,考查化归的数学思想方法,考查综合解题能力。满分14分。
(I)解:
是以为首项,2为公比的等比数列。
即
(II)证法一:
①
②
②-①,得
即
③-④,得
即
是等差数列。
证法二:同证法一,得
令得
设下面用数学归纳法证明
(1)当时,等式成立。
(2)假设当时,那么
这就是说,当时,等式也成立。
根据(1)和(2),可知对任何都成立。
是等差数列。
(III)证明:
答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。
(II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升,
依题意得
令得
当时,是减函数;
当时,是增函数。
当时,取到极小值
因为在上只有一个极值,所以它是最小值。
16.如图,连结的各边中点得到一个新的又连结的各边中点得到,如此无限继续下去,得到一系列三角形:,,,,这一系列三角形趋向于一个点M。已知则点M的坐标是的重心,∴ M=
(17)本小题主要考查三角函数的基本公式、三角恒等变换、三角函数的图象和性质等基本知识,以及推理和运算能力。满分12分。
解:(I)
的最小正周期
由题意得
即
的单调增区间为
(II)方法一:
先把图象上所有点向左平移个单位长度,得到的图象,再把所得图象上所有的点向上平移个单位长度,就得到的图象。
方法二:
把图象上所有的点按向量平移,就得到的图象。
(18)本小题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分12分。
方法一:
(I)证明:连结OC
在中,由已知可得
而 即
平面
(II)解:取AC的中点M,连结OM、ME、OE,由E为BC的中点知
直线OE与EM所成的锐角就是异面直线AB与CD所成的角
在中,
是直角斜边AC上的中线,
异面直线AB与CD所成角的大小为
(III)解:设点E到平面ACD的距离为
在中,
而
点E到平面ACD的距离为
方法二:
(I)同方法一。
(II)解:以O为原点,如图建立空间直角坐标系,则
异面直线AB与CD所成角的大小为
(III)解:设平面ACD的法向量为则
令得是平面ACD的一个法向量。
又 点E到平面ACD的距离
(19)本小题主要考查函数、导数及其应用等基本知识,考查运用数学知识分析和解决实际问题的能力。满分12分。
解:(I)当时,汽车从甲地到乙地行驶了小时,
要耗没(升)。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com