18.(2011海南,9分)氯气在298K、100kPa时,在1L水中可溶解0.09mol,实验测得溶于水的Cl2约有三分之一与水反应。请回答下列问题:
(1)该反应的离子方程式为__________;
(2)估算该反应的平衡常数__________(列式计算)
(3)在上述平衡体系中加入少量NaOH固体,平衡将向________移动;
(4)如果增大氯气的压强,氯气在水中的溶解度将______(填“增大”、“减小”或“不变”),平衡将向______________移动。
[答案](1);
(2) (水视为纯液体)
C起 0.09 0 0 0
C变 0.09× 0.03 0.03 0.03
C平 0.06 0.03 0.03 0.03
;
(3)正反应方向;(4)增大,正反应方向
命题立意:平衡相关内容的综合考查
解析:题干中用“溶于水的Cl2约有三分之一与水反应”给出可逆反应(该反应在教材中通常没提及可逆);平衡常数的计算根据题中要求列三行式求算;平衡移动是因为H+的减少向正反应方向移动;增大压强将增大氯气的浓度,平衡向正反应方向移动。
[技巧点拨]平衡题在近年的高考题中比较平和,但新课标高考题今年引入了对过程呈现的考查,这是以后高考中应注意的。
17.(2011新课标全国)科学家利用太阳能分解水生成的氢气在催化剂作用下与二氧化碳反应生成甲醇,并开发出直接以甲醇为燃料的燃料电池。已知H2(g)、CO(g)和CH3OH(l)的燃烧热△H分别为-285.8kJ·mol-1、-283.0kJ·mol-1和-726.5kJ·mol-1。请回答下列问题:
(1)用太阳能分解10mol水消耗的能量是_____________kJ;
(2)甲醇不完全燃烧生成一氧化碳和液态水的热化学方程式为_____________;
(3)在溶积为2L的密闭容器中,由CO2和H2合成甲醇,在其他条件不变得情况下,考察温度对反应的影响,实验结果如下图所示(注:T1、T2均大于300℃);
下列说法正确的是________(填序号)
①温度为T1时,从反应开始到平衡,生成甲醇的平均速率为:v(CH3OH)=mol·L-1·min-1
②该反应在T1时的平衡常数比T2时的小
③该反应为放热反应
④处于A点的反应体系从T1变到T2,达到平衡时增大
(4)在T1温度时,将1molCO2和3molH2充入一密闭恒容器中,充分反应达到平衡后,若CO2转化率为a,则容器内的压强与起始压强之比为______;
(5)在直接以甲醇为燃料电池中,电解质溶液为酸性,负极的反应式为________、正极的反应式为________。理想状态下,该燃料电池消耗1mol甲醇所能产生的最大电能为702.1kJ,则该燃料电池的理论效率为________(燃料电池的理论效率是指电池所产生的最大电能与燃料电池反应所能释放的全部能量之比)
解析:(1)氢气的燃烧热是-285.8kJ·mol-1,即每生成1mol的水就放出285.8kJ的能量,反之分解1mol的水就要消耗285.8kJ的能量,所以用太阳能分解10mol水消耗的能量是2858kJ;
(2)由CO(g)和CH3OH(l)燃烧热的热化学方程式
①CO(g)+1/2O2(g)=CO2(g) △H=-283.0kJ·mol-1;
②CH3OH(l) +3/2O2(g)=CO2(g)+2 H2O(l) △H=-726.5kJ·mol-1;
可知②-①得到CH3OH(l) +O2(g)=CO(g)+2 H2O(l) △H=-443.5kJ·mol-1;
(3)CO2和H2合成甲醇的化学方程式为CO2(g)+3H2(g)CH3OH(g) + H2O(g)。由图像可知B曲线先得到平衡,因此温度T2>T1,温度高平衡时甲醇的物质的量反而低,说明正反应是放热反应,升高温度平衡向逆反应方向移动,不利于甲醇的生成,平衡常数减小,即②错③正确;温度为T1时,从反应开始到平衡,生成甲醇的物质的量为mol,此时甲醇的浓度为,所以生成甲醇的平均速率为:v(CH3OH)= mol·L-1·min-1,因此①不正确;因为温度T2>T1,所以A点的反应体系从T1变到T2时,平衡会向逆反应方向移动,即降低生成物浓度而增大反应物浓度,所以④正确。
。
(5)在甲醇燃料电池中,甲醇失去电子,氧气得到电子,所以负极的电极反应式是CH3OH-6e-+H2O=CO2+6H+,正极的电极反应式是3/2O2+6e-+6H+=3H2O;甲醇的燃烧热是-726.5kJ·mol-1,所以该燃料电池的理论效率为。
答案:(1)2858; (2)CH3OH(l) +O2(g)=CO(g)+2 H2O(l) △H=-443.5kJ·mol-1;
(3)③④; (4)1-a/2;
(5)CH3OH-6e-+H2O=CO2+6H+、3/2O2+6e-+6H+=3H2O、96.6%
16.(2011重庆,14分)臭氧是一种强氧化剂,常用于消毒、灭菌等。
(1)O3与KI溶液反应生成的两种单质是___________和_________。(填分子式)
(2)O3在水中易分解,一定条件下,O3的浓度减少一半所需的时间(t)如题29表所示。已知:O3的起始浓度为0.0216 mol/L。
①pH增大能加速O3分解,表明对O3分解起催化作用的是___________.
②在30°C、pH=4.0条件下,O3的分解速率为__________ mol/(L·min)。
③据表中的递变规律,推测O3在下列条件下分解速率依次增大的顺序为______.(填字母代号)
a. 40°C、pH=3.0 b. 10°C、pH=4.0 c. 30°C、pH=7.0
(3)O3 可由臭氧发生器(原理如题29图)电解稀硫酸制得。
①图中阴极为_____(填“A”或“B”),其电极反应式为_____。
②若C处通入O 2 ,则A极的电极反应式为_____.
③若C处不通入O 2 ,D、E处分别收集到xL和有yL气体(标准情况),则E处收集的气体中O 3 所占的体积分数为_____。(忽略 O 3 的分解)。
解析:本题考察化学反应速率的概念、计算、外界条件对反应速率对影响以及有关电化学知识。
(1)臭氧是一种强氧化剂,能氧化I-生成单质碘,方程式为O3+2KI+H2O=I2+2KOH+O2↑;
(2)①pH增大,说明碱性增强,因此其催化剂作用的是OH-;
②由表中数据可知,在30°C、pH=4.0条件下,O3的浓度减少一半所需的时间是108min,所以其反应速率是;
③由表中数据知温度越高,pH越大,反应速率越快,所以分解速率依次增大的顺序为b、a、c;
(3)①溶液中-2价的O失去电子被氧化得到臭氧,在电解池中阳极失去电子,发生氧化反应,溶液中的阳离子在阴极得到电子,发生还原反应,因此A是阴极,B是阳极;溶液中只有阳离子氢离子,所以阴极电极反应式为2H++2e-=H2↑;
②若阴极通氧气,则氧气得到电子被还原成OH-,然后结合溶液中氢离子生成水,方程式为O2+4H++4e-=2H2O;
③由以上分析知D、E分别产生的气体是氢气和氧气、臭氧的混合气体。设臭氧的体积是nL,根据得失电子守恒知,解得n=x-2y,所以臭氧的体积分数是。
答案:(1)O2 I2
(2)①OH-;
②1.00×10-4
③b、a、c
(3)①2H++2e-=H2↑
②O2+4H++4e-=2H2O;
③
15.(2011山东高考28,14分)研究NO2、SO2 、CO等大气污染气体的处理具有重要意义。
(1)NO2可用水吸收,相应的化学反应方程式为 。利用反应6NO2+ 8NH37N5+12 H2O也可处理NO2。当转移1.2mol电子时,消耗的NO2在标准状况下是 L。
(2)已知:2SO2(g)+O2(g)2SO3(g) ΔH=-196.6 kJ·mol-1
2NO(g)+O2(g)2NO2(g) ΔH=-113.0 kJ·mol-1
则反应NO2(g)+SO2(g)SO3(g)+NO(g)的ΔH= kJ·mol-1。
一定条件下,将NO2与SO2以体积比1:2置于密闭容器中发生上述反应,下列能说明反应达到平衡
状态的是 。
a.体系压强保持不变
b.混合气体颜色保持不变
c.SO3和NO的体积比保持不变
d.每消耗1 mol SO3的同时生成1 molNO2
测得上述反应平衡时NO2与SO2体积比为1:6,则平衡常数K= 。
(3)CO可用于合成甲醇,反应方程式为CO(g)+2H2(g)CH3OH(g)。CO在不同温度下的平衡转化率与压强的关系如下图所示。该反应ΔH 0(填“>”或“ <”)。实际生产条件控制在250℃、1.3×104kPa左右,选择此压强的理由是 。
解析:(1)NO2溶于水生成NO和硝酸,反应的方程式是3NO2+H2O=NO+2HNO3;在反应6NO
+ 8NH37N5+12 H2O中NO2作氧化剂,化合价由反应前的+4价降低到反应后0价,因此当反应中转移1.2mol电子时,消耗NO2的物质的量为,所以标准状况下的体积是。
(2)本题考察盖斯定律的应用、化学平衡状态的判断以及平衡常数的计算。① 2SO2(g)+O2(g)2SO3(g) ΔH1=-196.6 kJ·mol-1 ② 2NO(g)+O2(g)2NO2(g) ΔH2=-113.0 kJ·mol-1 。②-①即得出2NO2(g)+2SO2(g)2SO3(g)+2NO(g) ΔH=ΔH2-ΔH1=-113.0 kJ·mol-1 +196.6 kJ·mol-1=+83.6 kJ·mol-1。所以本题的正确答案是41.8;反应NO2(g)+SO2(g)SO3(g)+NO(g)的特点体积不变的、吸热的可逆反应,因此a不能说明。颜色的深浅与气体的浓度大小有关,而在反应体系中只有二氧化氮是红棕色气体,所以混合气体颜色保持不变时即说明NO2的浓度不再发生变化,因此b可以说明;SO3和NO是生成物,因此在任何情况下二者的体积比总是满足1:1,c不能说明;SO3和NO2一个作为生成物,一个作为反应物,因此在任何情况下每消耗1 mol SO3的同时必然会生成1 molNO2,因此d也不能说明;设NO2的物质的量为1mol,则SO2的物质的量为2mol,参加反应的NO2的物质的量为xmol。
(3)由图像可知在相同的压强下,温度越高CO平衡转化率越低,这说明升高温度平衡向逆反应方向移动,因此正反应是放热反应;实际生产条件的选择既要考虑反应的特点、反应的速率和转化率,还要考虑生产设备和生产成本。由图像可知在1.3×104kPa左右时,CO的转化率已经很高,如果继续增加压强CO的转化率增加不大,但对生产设备和生产成本的要求却增加,所以选择该生产条件。
答案:(1)3NO2+H2O=NO+2HNO3;6.72
(2)-41.8;b;8/3;
(3)< 在1.3×104kPa下,CO的转化率已经很高,如果增加压强CO的转化率提高不大,而生产成本增加,得不偿失。
14、(2011广东高考31,15分)利用光能和光催化剂,可将CO2和H2O(g)转化为CH4和O2。紫外光照射时,在不同催化剂(I、II、III)作用下,CH4产量随光照时间的变化如图13所示。
(1)在0-30小时内,CH4的平均生成速率VI、VII和VIII从大到小的顺序为 ;反应开始后的12小时内,在第 种催化剂的作用下,收集的CH4最多。
(2)将所得CH4与H2O(g)通入聚焦太阳能反应器,发生反应:CH4(g)+H2O(g)CO(g)+3H2(g)。该反应的△H=+206 kJ•mol-1。
①在答题卡的坐标图中,画出反应过程中体系的能量变化图(进行必要的标注)
②将等物质的量的CH4和H2O(g)充入1L恒容密闭容器,某温度下反应达到平衡,平衡常数K=27,此时测得CO的物质的量为0.10mol,求CH4的平衡转化率(计算结果保留两位有效数字)。
(3)已知:CH4(g)+2O2(g) ===CO2(g)+2H2O(g) △H=-802kJ•mol-1
写出由CO2生成CO的热化学方程式 。
解析:本题考察化学反应速率的概念、计算及外界条件对反应速率对影响;反应热的概念和盖斯定律的计算;热化学方程式的书写;与化学平衡有关的计算;图像的识别和绘制。
(1)由图像可以看出,反应进行到30小时时,催化剂Ⅲ生成的甲烷最多,其次是催化剂Ⅱ,催化剂Ⅰ生成的甲烷最少。因此VI、VII和VIII从大到小的顺序为VIII>VII>VI>;同理由图像也可以看出,反应进行到12小时时,催化剂Ⅱ生成的甲烷最多,因此在第Ⅱ种催化剂的作用下,收集的CH4最多。
(2)①由热化学方程式可知,该反应是吸热反应,即反应物的总能量小于生成物的总能量,因此反应过程中体系的能量变化图为。
(3)由热化学方程式①CH4(g)+H2O(g)CO(g)+3H2(g) △H=+206 kJ•mol-1
②CH4(g)+2O2(g) ===CO2(g)+2H2O(g) △H=-802kJ•mol-1
①-②得CO2(g)+3H2O(g) === CO(g)+3H2(g)+2O2(g) △H=+1008 kJ•mol-1
答案:(1)VIII>VII>VI>;Ⅱ
(2)①
②91%
(3)CO2(g)+3H2O(g) === CO(g)+3H2(g)+2O2(g) △H=+1008 kJ•mol-1
13.(2011北京高考25,12分)
在温度t1和t2下,X2(g)和 H2反应生成HX的平衡常数如下表:
化学方程式 |
K (t1 ) |
K (t2) |
2 |
1.8 |
|
|
|
|
|
|
|
|
43 |
34 |
(1)已知t2 >t1,HX的生成反应是 反应(填“吸热”或“放热”)。
(2)HX的电子式是 。
(3)共价键的极性随共用电子对偏移程度的增大而增强,HX共价键的极性由强到弱的顺序是 。
(4)X2都能与H2反应生成HX,用原子结构解释原因: 。
(5)K的变化体现出X2化学性质的递变性,用原子结构解释原因:__________,原子半径逐渐增大,得电子能力逐渐减弱。
(6)仅依据K的变化,可以推断出:随着卤素原子核电荷数的增加,_______(选填字母)
a. 在相同条件下,平衡时X2的转化率逐渐降低
b. X2与H2反应的剧烈程度逐渐减弱
c. HX的还原性逐渐
d. HX的稳定性逐渐减弱
解析:(1)由表中数据可知,温度越高平衡常数越小,这说明升高温度平衡向逆反应方向移动,所以HX的生成反应是发热反应;
(2)HX属于共价化合物,H-X之间形成的化学键是极性共价键,因此HX的电子式是;
(3)F、Cl、Br、I属于 ⅦA,同主族元素自上而下随着核电荷数的增大,原子核外电子层数逐渐增多,导致原子半径逐渐增大,因此原子核对最外层电子的吸引力逐渐减弱,从而导致非金属性逐渐减弱,即这四种元素得到电子的能力逐渐减弱,所以H-F键的极性最强,H-I的极性最弱,因此HX共价键的极性由强到弱的顺序是HF、HCl、HBr、HI;
(4)卤素原子的最外层电子数均为7个,在反应中均易得到一个电子而达到8电子的稳定结构。而H原子最外层只有一个电子,在反应中也想得到一个电子而得到2电子的稳定结构,因此卤素单质与氢气化合时易通过一对共用电子对形成化合物HX;
(5)同(3)
(6)K值越大,说明反应的正向程度越大,即转化率越高,a正确;反应的正向程度越小,说明生成物越不稳定,越易分解,因此选项d正确;而选项c、d与K的大小无直接联系。
答案:(1)发热
(2)
(3)HF、HCl、HBr、HI;
(4)卤素原子的最外层电子数均为7个
(5)同一主族元素从上到下原子核外电子层数依次增多
(6)a、d
12.(2011安徽高考28,13分)
地下水中硝酸盐造成的氮污染已成为一个世界性的环境问题。文献报道某课题组模拟地下水脱氮过程,利用Fe粉和KNO3溶液反应,探究脱氮原理及相关因素对脱氮速率的影响。
(1)实验前:①先用0.1mol ·L-1H2SO4洗涤Fe粉,其目的是 ,然后用蒸馏水洗涤至中性;②将KNO3溶液的pH调至2.5;③为防止空气中的O2对脱氮的影响,应向KNO3溶液中通入 (写化学式)。
(2)下图表示足量Fe粉还原上述KNO3溶液过程中,测出的溶液中相关离子浓度、pH随时间的变化关系(部分副反应产物曲线略去)。请根据图中信息写出t1时刻前该反应的离子方程式 。t1时刻后,该反应仍在进行,溶液中NH4+的浓度在增大,Fe2+的浓度却没有增大,可能的原因是 。
(3)该课题组对影响脱氮速率的因素提出了如下假设,请你完成假设二和假设三:
假设一:溶液的pH;
假设二: ;
假设三: ;
……..
(4)请你设计实验验证上述假设一,写出实验步骤及结论。
(已知:溶液中的NO3-浓度可用离子色谱仪测定)
解析:(1)因为铁易生锈,即铁表面会有铁的氧化物等杂质,所以要用硫酸除去铁表面的氧化物等杂质;氧气具有强氧化性,会氧化生成的Fe2+,为防止该反应的发生必需通入一种保护原性气体且不能引入杂质,因此可以选用氮气;
(2)由图像可知反应的产物有Fe2+、NH4+和NO气体,所以该反应的离子方程式是:4Fe+10H++NO3-=4Fe2++NH4++3H2O;t1时刻后,随着反应的进行,溶液中pH逐渐增大,当pH达到一定程度时就会和反应产生的Fe2+结合,因此其浓度没有增大;
(3)影响反应速率的外界因素比较多,例如温度、浓度、溶液多酸碱性、固体多表面积等等;
(4)要验证假设一,需要固定其它条件不变,例如硝酸的浓度、反应的温度、铁的表面积都必需保持一致,然后在相同时间内测量溶液中NO3-的浓度(依据提示:溶液中的NO3-浓度可用离子色谱仪测定)来判断pH不同时对脱氮对反应速率有没有影响。
答案:(1)除去铁粉表面的氧化物等杂质 N2
(2)4Fe+10H++NO3-=4Fe2++NH4++3H2O;生成的Fe2+水解(或和溶液中OH-的结合);
(3)温度 铁粉颗粒大小
(4)实验步骤及结论:
①分别取等体积、等浓度的KNO3溶液于不同的试管中;
②调节溶液呈酸性且pH各不相同,并通入氮气;
③分别向上述溶液中加入足量等质量的同种铁粉;
④用离子色谱仪测定相同反应时间时各溶液中NO3-的浓度。若pH不同KNO3溶液中,测出的NO3-浓度不同,表明pH对脱氮速率有影响,否则无影响。
(本题属于开放性试题,合理答案均可)
11.(201浙江高考27,14分)某研究小组在实验室探究氨基甲酸铵(NH2COONH4)分解反应平衡常数和水解反应速率的测定。
(1)将一定量纯净的氨基甲酸铵置于特制的密闭真空容器中(假设容器体积不变,固体试样体积忽略不计),在恒定温度下使其达到分解平衡:NH2COONH4(s)2NH3(g)+CO2(g)。
实验测得不同温度下的平衡数据列于下表:
温度(℃) |
15.0 |
20.0 |
25.0 |
30.0 |
35.0 |
平衡总压强(kPa) |
5.7 |
8.3 |
12.0 |
17.1 |
24.0 |
平衡气体总浓度 (×10-3mol/L) |
2.4 |
3.4 |
4.8 |
6.8 |
9.4 |
①可以判断该分解反应已经达到化学平衡的是___________。
A. B.密闭容器中总压强不变
C.密闭容器中混合气体的密度不变 D.密闭容器中氨气的体积分数不变
②根据表中数据,列式计算25.0℃时的分解平衡常数:__________________________。
③取一定量的氨基甲酸铵固体放在一个带活塞的密闭真空容器中,在25℃下达到分解平衡。若在恒温下压缩容器体积,氨基甲酸铵固体的质量______(填“增加”、“减小”或“不变”)。
④氨基甲酸铵分解反应的焓变△H____0,熵变△S___0(填>、<或=)。
(2)已知:NH2COONH4+2H2ONH4HCO3+NH3·H2O。该研究小组分别用三份不同初始浓度的氨基甲酸铵溶液测定水解反应速率,得到c(NH2COO-)随时间变化趋势如图所示。
⑤计算25℃时,0~6min氨基甲酸铵水解反应的平均速率___________________________。
⑥根据图中信息,如何说明水解反应速率随温度升高而增大:_______________________。
解析:(1)①A.不能表示正逆反应速率相等;B.反应进行则压强增大;C.恒容,反应进行则密度增大;D.反应物是固体,NH3的体积分数始终为2/3
②需将25℃的总浓度转化为NH3和CO2的浓度;K可不带单位。
③加压,平衡逆移;④据表中数据,升温,反应正移,△H>0,固体分解为气体,△S>0。
(2)⑤;
⑥图中标▲与标●的曲线相比能确认。
答案:(1)①BC; ②K=c2(NH3)·c(CO2)=(2c/3)2(1c/3)=1.6×10-8(mol·L-1)3
③增加; ④>,>。
(2)⑤0.05mol·L-1·min-1;
⑥25℃反应物的起始浓度较小,但0~6min的平均反应速率(曲线的斜率)仍比15℃大。
10.(2011四川)可逆反应①X(g)+2Y(g)2Z(g) 、②2M(g)N(g)+P(g)分别在密闭容器的两个反应室中进行,反应室之间有无摩擦、可滑动的密封隔板。反应开始和达到平衡状态时有关物理量的变化如图所示:
下列判断正确的是
A. 反应①的正反应是吸热反应
B. 达平衡(I)时体系的压强与反应开始时体系的压强之比为14:15
C. 达平衡(I)时,X的转化率为
D. 在平衡(I)和平衡(II)中M的体积分数相等
解析:温度降低时,反应②中气体的物质的量减少,说明平衡向正方应方向移动,因此正方应是放热反应;由图可以看出达平衡(I)时体系的压强与反应开始时体系的压强之比为;同理可以计算出达平衡(I)时反应①中气体的物质的量是,即物质的量减少了,所以达平衡(I)时,X的转化率为;由于温度变化反应②的平衡已经被破坏,因此在平衡(I)和平衡(II)中M的体积分数不相等。
答案:C
9.(2011全国II卷8)在容积可变的密闭容器中,2mo1N2和8mo1H2在一定条件下发生反应,达到平衡
时,H2的转化率为25%,则平衡时的氮气的体积分数接近于
A.5% B.10% C.15% D.20%
解析: N2 + 3H22NH3
起始量(mol) 2 8 0
转化量(mol) 2/3 2 4/3
平衡量(mol) 4/3 6 4/3
所以平衡时的氮气的体积分数=。
答案:C
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com