22(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.
在平面直角坐标系中,对于直线:和点记若<0,则称点被直线分隔。若曲线C与直线没有公共点,且曲线C上存在点被直线分隔,则称直线为曲线C的一条分隔线.
⑴ 求证:点被直线分隔;
⑵若直线是曲线的分隔线,求实数的取值范围;
⑶动点M到点的距离与到轴的距离之积为1,设点M的轨迹为E,求证:通过原点的直线中,有且仅有一条直线是E的分割线.
21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图,某公司要在两地连线上的定点处建造广告牌,其中为顶端,长35米,长80米,设在同一水平面上,从和看的仰角分别为.
(1)设计中是铅垂方向,若要求zxxk,问的长至多为多少(结果精确到0.01米)?
(2)施工完成后.与铅垂方向有偏差,现在实测得求的长(结果精确到0.01米)?
20.(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分。
设常数,函数
(1)若=4,求函数的反函数;
(2)根据的不同取值,讨论函数的奇偶性,并说明理由.
三.解答题
19、(本题满分12分)
底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.
zxxk
三、解答题
(15)(本小题满分13分)
已知函数,.
(Ⅰ)求的最小正周期;
(Ⅱ)求在闭区间上的最大值和最小值.
(16)(本小题满分13分)
某大学志愿者协会有6名男同学,4名女同学. 在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院. 现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(Ⅰ)求选出的3名同学是来自互不相同学院的概率;
(Ⅱ)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.
(17)(本小题满分13分)
如图,在四棱锥中,底面,,,,,点为棱的中点.
(Ⅰ)证明 ;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)若为棱上一点,满足,
求二面角的余弦值.
(18)(本小题满分13分)
设椭圆()的左、右焦点为,右顶点为,上顶点为.已知.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切. 求直线的斜率.
(19)(本小题满分14分)
已知和均为给定的大于1的自然数.设集合,集合.
(Ⅰ)当,时,用列举法表示集合;
(Ⅱ)设,,,其中
(20)(本小题满分14分)
已知函数,.已知函数有两个零点,且.
(Ⅰ)求的取值范围;
(Ⅱ)证明 随着的减小而增大;
(Ⅲ)证明 随着的减小而增大.
二、填空题
(9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.
(10)已知一个几何体的三视图如图所示(单位:m),则该几何体的体积为_______.
(11)设是首项为,公差为-1的等差数列,为其前项和.若成等比数列,则的值为__________.
(12)在中,内角所对的边分别是.已知,,则的值为_______.
(13)在以为极点的极坐标系中,圆和直线相交于两点.若是等边三角形,则的值为___________.
(14)已知函数,.若方程恰有4个互异的实数根,则实数的取值范围为__________.
21.(本小题满分14分) 设函数,其中,
(1)求函数的定义域D(用区间表示);
(2)讨论函数在D上的单调性;
(3)若,求D上满足条件的的集合(用区间表示)。
2014年普通高等学校招生全国统一考试(广东卷)
20.(本小题满分14分)已知椭圆的一个焦点为,离心率为,
(1)求椭圆C的标准方程;
(2)若动点为椭圆外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程。
19.(本小题满分14分)设数列的前和为,满足,且,
(1)求的值;
(2)求数列的通项公式。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com