22.(本小题满分12分)当m为何值时,直线(2m2+m-3)x+(m2-m)y=4m-1.
(1)倾斜角为45°;
(2)在x轴上的截距为1.
详解答案
1[答案] A
[解析] 斜率k==,∴倾斜角为30°.
[解析] 由条件知kBC=kAC,
∴=,∴b=-9.
2[答案] D
3[答案] C
[解析] 由直线方程的点斜式得y-2=tan30°(x-1),
整理得x-3y+6-=0.
4[答案] A
[解析] ∵A1B2-A2B1=3×3-1×(-2)=11≠0,
∴这两条直线相交.
5[答案] A
[解析] 直线变形为m(x+2)-(y-1)=0,故无论m取何值,点(-2,1)都在此直线上,∴选A.
6[答案] A
[解析] ∵ab<0,bc<0,∴a,b,c均不为零,在直线方程ax+by+c=0中,令x=0得,y=->0,令y=0得x=-,∵ab<0,bc<0,∴ab2c>0,∴ac>0,∴-<0,∴直线通过第一、二、三象限,故选A.
7[答案] B
[解析] 直线方程y=-x化为一般式x+y=0,
则d=.
8[答案] C
[解析] 直线y=-2x+3的斜率为-2,则所求直线斜率k=-2,直线方程y=3x+4中,令y=0,则x=-,即所求直线与x轴交点坐标为(-,0).故所求直线方程为y=-2(x+),即y=-2x-.
9[答案] D
[解析] ∵两直线互相垂直,∴a·(a+2)=-1,
∴a2+2a+1=0,∴a=-1.
10[答案] B
[解析] ∵两条直角边互相垂直,
∴其斜率k1,k2应满足k1k2=-1,排除A、C、D,故选B.
11[答案] A
[解析] kPA=-4,kPB=,画图观察可知k≥或k≤-4.
12[答案] B
[解析] 由平面几何知,与A距离为1的点的轨迹是以A为圆心,以1为半径的⊙A,与B距离为2的点的轨迹是半径为2的⊙B,显然⊙A和⊙B相交,符合条件的直线为它们的公切线有2条.
13[答案] 5
[解析] |AB|==5.
14[答案]
[解析] 直线l2的方程可化为x-y+=0,
则d==.
15[答案] x+y-5=0 x-y+1=0
[解析] 设直线l的方程为+=1,则解得a=5,b=5或a=-1,b=1,即直线l的方程为+=1或+=1,即x+y-5=0或x-y+1=0.
16[答案] ①⑤
[解析] 两平行线间的距离为
d==,
由图知直线m与l1的夹角为30°,l1的倾斜角为45°,
所以直线m的倾斜角等于30°+45°=75°或45°-30°=15°.
[点评] 本题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合的思想.是高考在直线知识命题中不多见的较为复杂的题目,但是只要基础扎实、方法灵活、思想深刻,这一问题还是不难解决的.所以在学习中知识是基础、方法是骨架、思想是灵魂,只有以思想方法统领知识才能在考试中以不变应万变.
17[解析] 过AB两点的直线方程是=.
点斜式为:y+1=-(x-4)
斜截式为:y=-x+
截距式为:+=1.
18[解析] (1)直线l1的斜率k1=-1,直线l2的斜率k2=a2-2,因为l1∥l2,所以a2-2=-1且2a≠2,解得:a=-1.所以当a=-1时,直线l1:y=-x+2a与直线l2:y=(a2-2)x+2平行.
(2)直线l1的斜率k1=2a-1,l2的斜率k2=4,因为l1⊥l2,所以k1k2=-1,即4(2a-1)=-1,解得a=.所以当a=时,直线l1:y
=(2a-1)x+3与直线l2:y=4x-3垂直.
19[解析] (1)设C(x,y),由AC的中点M在y轴上得,=0,解得x=-5.
由BC中点N在x轴上,得=0,
∴y=-3,∴C(-5,-3)
(2)由A、C两点坐标得M(0,-).
由B、C两点坐标得N(1,0).
∴直线MN的方程为x+=1.即5x-2y-5=0.
20[解析] 设点A的坐标为(x1,y1),因为点P是AB中点,则点B坐标为(6-x1,-y1),因为点A、B分别在直线l1和l2上,有
解得
由两点式求得直线方程为8x-y-24=0.
21[解析] (1)直线AC的斜率kAC==-2
即:7x+y+3=0(-1≤x≤0).
∴直线BD的斜率kBD=,
∴直线BD的方程为y=(x+4),即x-2y+4=0
(2)直线BC的斜率kBC==
∴EF的斜率kEF=-
线段BC的中点坐标为(-,2)
∴EF的方程为y-2=-(x+)
即6x+8y-1=0.
(3)AB的中点M(0,-3),
∴直线CM的方程为:=,
22[解析] (1)倾斜角为45°,则斜率为1.
∴-=1,解得m=-1,m=1(舍去)
直线方程为2x-2y-5=0符合题意,∴m=-1
(2)当y=0时,x==1,
解得m=-,或m=2
当m=-,m=2时都符合题意,
∴m=-或2.
21.(本小题满分12分)已知△ABC的三个顶点A(4,-6),B(-4,0),C(-1,4),求
(1)AC边上的高BD所在直线方程;
(2)BC边的垂直平分线EF所在直线方程;
(3)AB边的中线的方程.
20.(本小题满分12分)过点P(3,0)作一直线,使它夹在两直线l1:2x-y-2=0和l2: x+y+3=0之间的线段AB恰被P点平分,求此直线方程.
19.(本小题满分12分)在△ABC中,已知点A(5,-2),B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上,求:
(1)顶点C的坐标;
(2)直线MN的方程.
18.(12分)(1)当a为何值时,直线l1:y=-x+2a与直线l2:y=(a2-2)x+2平行?
(2)当a为何值时,直线l1:y=(2a-1)x+3与直线l2:y=4x-3垂直?
三、解答题
17.(本小题满分10分)求经过点A(-2,3),B(4,-1)的直线的两点式方程,并把它化成点斜式,斜截式和截距式.
16.(2009·高考全国卷Ⅰ)若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为2,则m的倾斜角可以是①15° ②30° ③45° ④60° ⑤75°,其中正确答案的序号是________.(写出所有正确答案的序号)
15.若直线l经过点P(2,3)且与两坐标轴围成一个等腰直角三角形,则直线l的方程为________或________.
14.平行直线l1:x-y+1=0与l2:3x-3y+1=0的距离等于________.
二、填空题
13.已知点A(-1,2),B(-4,6),则|AB|等于________.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com