一、选择题
1、在1,0,2,-3这四个数中,最大的数是( )
A、1 B、0 C、2 D、-3
29.(2014•台湾)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.
解:∵∠BCE=∠ACD=90°, ∴∠3+∠4=∠4+∠5, ∴∠3=∠5, 在△ACD中,∠ACD=90°, ∴∠2+∠D=90°, ∵∠BAE=∠1+∠2=90°, ∴∠1=∠D, 在△ABC和△DEC中, , ∴△ABC≌△DEC(AAS). |
二、非选择题
28.(2014•台湾)已知甲校有a人,其中男生占60%;乙校有b人,其中男生占50%.今将甲、乙两校合并后,小清认为:「因为=55%,所以合并后的男生占总人数的55%.」如果是你,你会怎么列式求出合并后男生在总人数中占的百分比?你认为小清的答案在任何情况都对吗?请指出你认为小清的答案会对的情况.请依据你的列式检验你指出的情况下小清的答案会对的理由.
解析:合并后男生在总人数中占的百分比是:×100%.
当a=b时小清的答案才成立;
当a=b时,×100%=55%.
27.(3分)(2014•台湾)如图,矩形ABCD中,AD=3AB,O为AD中点,是半圆.甲、乙两人想在上取一点P,使得△PBC的面积等于矩形ABCD的面积其作法如下:
(甲) 延长BO交于P点,则P即为所求;
(乙) 以A为圆心,AB长为半径画弧,交于P点,则P即为所求.
对于甲、乙两人的作法,下列判断何者正确?( )
|
A. |
两人皆正确 |
B. |
两人皆错误 |
C. |
甲正确,乙错误 |
D. |
甲错误,乙正确 |
解析: 解:要使得△PBC的面积等于矩形ABCD的面积,
需P甲H=P乙K=2AB.
故两人皆错误.
故选:B.
26.已知a、h、k为三数,且二次函数y=a(x﹣h)2+k在坐标平面上的图形通过(0,5)、(10,8)两点.若a<0,0<h<10,则h之值可能为下列何者?( )
|
A. |
1 |
B. |
3 |
C. |
5 |
D. |
7 |
解析: 解:∵抛物线的对称轴为直线x=h,
而(0,5)、(10,8)两点在抛物线上,
∴h﹣0>10﹣h,解得h>5.
故选D.
25.有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a、b之值,下列何者正确?( )
|
A. |
a=16 |
B. |
a=24 |
C. |
b=24 |
D. |
b=34 |
解析: 甲箱98﹣49=49(颗),
∵乙箱中位数40,
∴小于、大于40各有(49﹣1)÷2=24(颗),
∴甲箱中小于40的球有39﹣24=15(颗),大于40的有49﹣15=34(颗),即a=15,b=34.
故选D
24.下列选项中的四边形只有一个为平行四边形,根据图中所给的边长长度及角度,判断哪一个为平行四边形?( )
|
A. |
|
B. |
|
C. |
|
D. |
|
解析: (A) 上、下这一组对边平行,可能为等腰梯形;
(B) 上、下这一组对边平行,可能为等腰梯形,但此等腰梯形底角为90°,所以为平行
四边形;
(C) 上、下这一组对边平行,可能为梯形;
(D) 上、下这一组对边平行,可能为梯形;
故选B
23.若有一等差数列,前九项和为54,且第一项、第四项、第七项的和为36,则此等差数列的公差为何?( )
|
A. |
﹣6 |
B. |
﹣3 |
C. |
3 |
D. |
6 |
解析: ∵前九项和为54,
∴第五项=54÷9=6,
∵第一项、第四项、第七项的和为36,
∴第四项=36÷3=12,
∴公差=第五项﹣第四项=6﹣12=﹣6.
故选:A
22.图为歌神KTV的两种计费方案说明.若晓莉和朋友们打算在此KTV的一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间包厢里欢唱?( )
|
A. |
6 |
B. |
7 |
C. |
8 |
D. |
9 |
解析: 设晓莉和朋友共有x人,
若选择包厢计费方案需付:900×6+99x元,
若选择人数计费方案需付:540×x+(6﹣3)×80×x=780x(元),
∴900×6+99x<780x,
解得:x>=7.
∴至少有8人.
故选C
21.如图,G为△ABC的重心.若圆G分别与AC、BC相切,且与AB相交于两点,则关于△ABC三边长的大小关系,下列何者正确?( )
|
A. |
BC<AC |
B. |
BC>AC |
C. |
AB<AC |
D. |
AB>AC |
解析: ∵G为△ABC的重心,
∴△ABG面积=△BCG面积=△ACG面积,
又∵GHa=GHb>GHc,
∴BC=AC<AB.
故选D.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com