0  120713  120721  120727  120731  120737  120739  120743  120749  120751  120757  120763  120767  120769  120773  120779  120781  120787  120791  120793  120797  120799  120803  120805  120807  120808  120809  120811  120812  120813  120815  120817  120821  120823  120827  120829  120833  120839  120841  120847  120851  120853  120857  120863  120869  120871  120877  120881  120883  120889  120893  120899  120907  447090 

35.(2012 广东)(18分)

如图17所示,质量为M的导体棒ab,垂直放在相距为l的平行光滑金属轨道上。导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B、方向垂直与导轨平面向上的匀强磁场中,左侧是水平放置、间距为d的平行金属板,R和Rx分别表示定值电阻和滑动变阻器的阻值,不计其他电阻。

(1)调节Rx=R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I及棒的速率v。

(2)改变Rx,待棒沿导轨再次匀速下滑后,将质量为m、带电量为+q的微粒水平射入金属板间,若它能匀速通过,求此时的Rx。

[考点]电磁感应、带电粒子在电场中运动

[答案](1) (2)

[解析](1)当Rx=R棒沿导轨匀速下滑时,由平衡条件

安培力

解得

感应电动势

    电流

解得 

(2)微粒水平射入金属板间,能匀速通过,由平衡条件

棒沿导轨匀速,由平衡条件

       金属板间电压

解得

 

 

试题详情

26.[考点]本题考查楞次定律

[解析](1)磁铁N极向下从线圈上方竖直插入L时,线圈的磁场向下且增强,感应磁场向上,且电流流入电流计左端,根据右手定则可知线圈顺时针绕向。

(2)条形磁铁从图中虚线位置向右远离L时,线圈的磁场向上且减弱,感应电流从电流计右端流入,根据右手定则可知线圈逆时针绕向。

[答案](1)顺时针,(2)逆时针

 

(2012上海)33.(14分)如图,质量为M的足够长金属导轨abcd放在光滑的绝缘水平面上。一电阻不计,质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PQbc构成矩形。棒与导轨间动摩擦因数为m,棒左侧有两个固定于水平面的立柱。导轨bc段长为L,开始时PQ左侧导轨的总电阻为R,右侧导轨单位长度的电阻为R0。以ef为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B。在t=0时,一水平向左的拉力F垂直作用于导轨的bc边上,使导轨由静止开始做匀加速直线运动,加速度为a。

(1)求回路中感应电动势及感应电流随时间变化的表达式;

(2)经过多少时间拉力F达到最大值,拉力F的最大值为多少?

(3)某一过程中回路产生的焦耳热为Q,导轨克服摩擦力做功为W,求导轨动能的增加量。

解析:(1)感应电动势为E=BLv,导轨做初速为零的匀加速运动,v=at,E=BLat,s=at2/2,感应电流的表达式为I=BLv/R总=BLat/(R+2R0´at2/2)=BLat/(R+R0at2),

(2)导轨受安培力FA=BIL=B2L2at/(R+R0at2),摩擦力为Ff=mFN=m(mg+BIL)=m[mg+B2L2at/(R+R0at2)],由牛顿定律F-FA-Ff=Ma,F=Ma+FA+Ff=Ma+mmg+(1+m)B2L2at/(R+R0at2),上式中当R/t=R0at即t=时外力F取最大值,F max=Ma+mmg+(1+m)B2L2,

(3)设此过程中导轨运动距离为s,由动能定理W合=DEk,摩擦力为Ff=m(mg+FA),摩擦力做功为W=mmgs+mWA=mmgs+mQ,s=,DEk=Mas=(W-mQ),

 

 

 

(2012新课标)19如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;  磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。现使线框保持图中所示位置,磁感应强度大小随时间线性变化。为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为

      B.   C.    D. 

19[答案]C

[解析]线圈匀速转动过程中,;要使线圈产生相同电流,,所以,所以C正确。

 

(2012新课标)20如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在t=O到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中的感应电流总是沿顺时针方向:线框受到的安培力的合力先水平向左、后水平向右。设电流i正方向与图中箭头所示方向相同,则i随时间t变化的图线可能是

 

  20[答案]A

由楞次定律可知:线框受力水平向左时,线圈中的磁场要阻碍原磁场引起的磁通量的减弱,说明导线中的电流正在减弱;线框受力水平向右时,线圈中的磁场要阻碍原磁场引起的磁通量的增强,说明导线中的电流正在增强;所以导线中的电流先减弱后增强,所以CD错误;又因线圈中的电流为顺时针方向,所以由右手螺旋定则知线圈产生磁场为垂直纸面向里,因为线圈中的磁场要阻碍原磁场引起的磁通量的减弱,故导线初始状态在导线右侧产生的磁场方向为垂直纸面向里,由右手螺旋定则知导线中电流方向为正方向,所以A正确,B错误。

试题详情

26.(2012上海)(4分)为判断线圈绕向,可将灵敏电流计G与线圈L连接,如图所示。已知线圈由a端开始绕至b端;当电流从电流计G左端流入时,指针向左偏转。

(1)将磁铁N极向下从线圈上方竖直插入L时,发现指针向左偏转。俯视线圈,其绕向为_______________(填“顺时针”或“逆时针”)。

(2)当条形磁铁从图中虚线位置向右远离L时,指针向右偏转。俯视线圈,其绕向为_______________(填“顺时针”或“逆时针”)。 (1)顺时针,(2)逆时针,

 

试题详情

25.[考点]本题考查电磁感应的力学问题和能量问题

[解析]导体框在磁场中受到的合外力等于F,根据牛顿第二定律可知导体框的加速度为。由于导体框运动不产生感应电流,仅是磁感应强度增加产生感应电流,因而磁场变化产生的感应电动势为,故导体框中的感应电流做功的功率为

[答案] 

[方法总结]闭合线框在匀强磁场中切割磁场时,虽然产生感应电动势,但是不产生感应电流。匀强磁场变化产生感应电流,但是闭合线框所受安培力的合力为零。

 

 

试题详情

18.(2011年高考·全国大纲版理综卷)如图所示,两根足够长的金属导轨abcd竖直放置,导轨间距离为L,电阻不计。在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡。整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直。现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放。金属棒下落过程中保持水平,且与导轨接触良好。已知某时刻后两灯泡保持正常发光。重力加速度为g。求:

⑴磁感应强度的大小;⑵灯泡正常发光时导体棒的运动速率。

解析:(1)设小灯泡的额定电流I0,有:PI02R     ①

由题意,在金属棒沿着导轨竖直下落的某时刻后,小灯泡保持正常发光,流经MN的电流为

I=2I0                                ②

此时刻金属棒MN所受的重力和安培力相等,下落的速度达到最大值,有 mgBLI    ③

联立①②③式得 B=                       ④

(2)设灯泡正常发光时,导体棒的速率为v,由电磁感应定律与欧姆定律得

EBLv                                     

ERI0                                      ⑥

联立①②④⑤⑥式得 v=                  ⑦

 

专题10电磁感应

(2012上海)25. 正方形导线框处于匀强磁场中,磁场方向垂直框平面,磁感应强度随时间均匀增加,变化率为k。导体框质量为m、边长为L,总电阻为R,在恒定外力F作用下由静止开始运动。导体框在磁场中的加速度大小为__________,导体框中感应电流做功的功率为_______________。F/m,k2L4/R,

试题详情

17.解析:(1)导体棒先在无磁场区域做匀减速运动,有

     

代入数据解得:,导体棒没有进入磁场区域。

导体棒在末已经停止运动,以后一直保持静止,离左端位置仍为

(2)前磁通量不变,回路电动势和电流分别为

回路产生的电动势为

回路的总长度为,因此回路的总电阻为

电流为

根据楞次定律,在回路中的电流方向是顺时针方向

(3)前电流为零,后有恒定电流,焦耳热为

试题详情

17.(2011年高考·浙江理综卷)如图甲所示,在水平面上固定有长为L=2m、宽为d=1m的金属“U”型导轨,在“U”型导轨右侧l=0.5m范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如图乙所示。在t=0时刻,质量为m=0.1kg的导体棒以v0=1m/s的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1Ω/m,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取g=10m/s2)。

⑴通过计算分析4s内导体棒的运动情况;

⑵计算4s内回路中电流的大小,并判断电流方向;

⑶计算4s内回路产生的焦耳热。

 

 

 

 

试题详情

16.解析:(1)设小环受到摩擦力大小为f,则由牛顿第二定律得到  ①,

代入数据得到   ②。

(2)设经过K杆的电流为I1,由K杆受力平衡得到  ③,设回路总电流为I   ,总电阻为R总,  ④,.  ⑤,设Q杆下滑速度大小为v,产生的感应电动势为E,有  ⑥,  ⑦,   ⑧,拉力的瞬时功率为PFv.  ⑨,

联立以上方程得到P=2W。

试题详情

16.(2011年高考·四川理综卷)如图所示,间距l=0.3m的平行金属导轨a1b1c1a2b2c2分别固定在两个竖直面内,在水平面a1b1b2a2区域内和倾角θ=37º的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4T、方向竖直向上和B2=1T、方向垂直于斜面向上的匀强磁场。电阻R=0.3Ω、质量m1=0.1kg、长为l 的相同导体杆KSQ分别放置在导轨上,S杆的两端固定在b1b2点,KQ杆可沿导轨无摩擦滑动且始终接触良好。一端系于K杆中点的轻绳平行于导轨绕过轻质滑轮自然下垂,绳上穿有质量m2=0.05kg的小环。已知小环以a=6m/s2的加速度沿绳下滑,K杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动。不计导轨电阻和滑轮摩擦,绳不可伸长。取g=10 m/s2,sin37º=0.6,cos37º=0.8。求

⑴小环所受摩擦力的大小;

Q杆所受拉力的瞬时功率。

试题详情

15.解析:(1)下滑过程中安培力的功即为在电阻上产生的焦耳热,由于,因此

 ,∴

(2)金属棒下滑时受重力和安培力,由牛顿第二定律

(3)此解法正确。金属棒下滑时舞重力和安培力作用,其运动满足

上式表明,加速度随速度增加而减小,棒作加速度减小的加速运动。无论最终是否达到匀速,当棒到达斜面底端时速度一定为最大。由动能定理可以得到棒的末速度,因此上述解法正确。

,∴

试题详情


同步练习册答案