6.(2014年山东烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为( )
A. 28° B. 52° C. 62° D. 72°
5.(2014年山东烟台)按如图的运算程序,能使输出结果为3的x,y的值是( )
A. x=5,y=﹣2 B. x=3,y=﹣3 C. x=﹣4,y=2 D. x=﹣3,y=﹣9
4.(2014年山东烟台)如图是一个正方体截去一角后得到的几何体,它的主视图是( )
A. B. C. D.
3.(2014年山东烟台)烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为( )
A.5.613×1011元 B. 5.613×1012元 C. 56.13×1010元 D. 0.5613×1012元
2.(2014年山东烟台)下列手机软件图标中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
一、选择题
1.(2014年山东烟台)﹣3的绝对值等于( )
A.﹣3 B. 3 C. ±3 D. ﹣
3.(2014·潍坊模拟)已知函数f(x)=ax2-(a+2)x+ln x.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围;
(3)若对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.
[解] (1)当a=1时,f(x)=x2-3x+ln x,f′(x)=2x-3+.
因为f′(1)=0,f(1)=-2.
所以切线方程是y=-2.
(2)函数f(x)=ax2-(a+2)x+ln x的定义域是(0,+∞).
当a>0时,f′(x)=2ax-(a+2)+=(x>0),
令f′(x)=0,即f′(x)=
==0,
所以x=或x=.
当0<≤1,即a≥1时,f(x)在[1,e]上单调递增,
所以f(x)在[1,e]上的最小值是f(1)=-2;
当1<<e时,f(x)在[1,e]上的最小值是f<f(1)=-2,不合题意;
当≥e时,f(x)在(1,e)上单调递减,
所以f(x)在[1,e]上的最小值是f(e)<f(1)=-2,不合题意.
综上a的取值范围是[1,+∞).
(3)设g(x)=f(x)+2x,则g(x)=ax2-ax+ln x,
只要g(x)在(0,+∞)上单调递增即可.
而g′(x)=2ax-a+=,
当a=0时,g′(x)=>0,此时g(x)在(0,+∞)上单调递增;
当a≠0时,只需g′(x)≥0在(0,+∞)上恒成立,因为x∈(0,+∞),只要2ax2-ax+1≥0,则需要a>0,
对于函数y=2ax2-ax+1,过定点(0,1),对称轴x=>0,只需Δ=a2-8a≤0,
即0<a≤8.
综上a的取值范围是[0,8].
2.已知函数f(x)=-x2+4x-3ln x在[t,t+1]上不单调,则t的取值范围是________.
[解析] 由题意知f′(x)=-x+4-==-,由f′(x)=0得函数f(x)的两个极值点为1,3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间[t,t+1]上就不单调,由t<1<t+1或t<3<t+1,得0<t<1或2<t<3.
[答案] (0,1)∪(2,3)
1.(2013·湖北高考)已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( )
A.(-∞,0) B.
C.(0,1) D.(0,+∞)
[解析] 由已知得f′(x)=0有两个正实数根x1,x2(x1<x2),即f′(x)的图象与x轴有两个交点,从而得a的取值范围.
f′(x)=ln x+1-2ax,依题意ln x+1-2ax=0有两个正实数根x1,x2(x1<x2).设g(x)=ln x+1-2ax,函数g(x)=ln x+1-2ax有两个零点,显然当a≤0时不合题意,必有a>0;g′(x)=-2a,令g′(x)=0,得x=,于是g(x)在上单调递增,在上单调递减,所以g(x)在x=处取得极大值,
即f′=ln >0,>1,所以0<a<.
[答案] B
10.(2014·烟台模拟)已知函数f(x)=(a∈R).
(1)求f(x)的极值;
(2)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有公共点,求实数a的取值范围.
[解] (1)f(x)的定义域为(0,+∞),f′(x)=,
令f′(x)=0得x=e1-a,
当x∈(0,e1-a)时,f′(x)>0,f(x)是增函数;
当x∈(e1-a,+∞)时,f′(x)<0,f(x)是减函数,
∴f(x)在x=e1-a处取得极大值,f(x)极大值=f(e1-a)=ea-1,无极小值.
(2)①当e1-a<e2时,即a>-1时,
由(1)知f(x)在(0,e1-a)上是增函数,在(e1-a,e2]上是减函数,
∴f(x)max=f(e1-a)=ea-1,
又当x=e-a时,f(x)=0,
当x∈(0,e-a]时,f(x)<0;当x∈(e-a,e2]时,f(x)>0;
∵f(x)的图象与g(x)=1的图象在(0,e2]上有公共点,
∴ea-1≥1,解得a≥1,又a>-1,所以a≥1.
②当e1-a≥e2时,即a≤-1时,f(x)在(0,e2]上是增函数,
∴f(x)在(0,e2]上的最大值为f(e2)=,
所以原问题等价于≥1,解得a≥e2-2.
又a≤-1,所以此时a无解.
综上,实数a的取值范围是[1,+∞).
B组 能力提升
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com