24.如图,直角梯形ABCD中,AD//BC,∠B=90°,AB=12cm,BC=9cm,DC=13cm,点P是线段AB上一个动点。设BP为xcm,△PCD的面积为。
(1)求AD的长;
(2)求y与x之间的函数关系式,并求出当x为何值时,y有最大值?最大值是多少?
(3)在线段AB上是否存在点P,使得△PCD是直角三角形?若存在,求出x的值;若不存在,请说明理由。
23.如图1,点P是线段MN的中点,请你利用该图形画一对以点P为对称中心的全等三角形。
请你参考这个作全等三角形的方法,解答下列问题:
图1
(1)如图2,在Rt△ABC中,∠BAC=90°,AB>AC,点D是BC边中点,过D作射线交AB于E,交CA延长线于F,请猜想∠F等于多少度时,BE=CF(直接写出结果,不必证明)。
图2
(2)如图3,在△ABC中,如果∠BAC不是直角,而(1)中的其他条件不变,若BE=CF的结论仍然成立,请写出△AEF必须满足的条件,并加以证明。
图4
22.如图,在⊙O中,弦AB与半径相等,连结OB并延长,使BC=OB。
(1)试判断直线AC与⊙O的位置关系,并证明你的结论;
(2)请你在⊙O上找到一个点D,使AD=AC(完成作图,证明你的结论),并求∠ABD的度数。
21.某高速公路检测点抽测了200辆汽车的车速,并将检测结果绘制出部分车速频率分布直方图(每组包含最大值不包含最小值),如图所示。根据以上信息,解答下列问题:
(1)补全频率分布直方图;
(2)按规定,车速在70千米/时-120千米/时范围内为正常行驶,试计算正常行驶的车辆所占的百分比;
(3)按规定,车速在120千米/时以上时为超速行驶,如果该路段每天的平均车流量约为1万辆,试估计每天超速行驶的车辆数。
20.在平面直角坐标系xOy中,一次函数的图象与反比例函数的图象交于点,与y轴交于点B。
(1)求这个一次函数的解析式;
(2)求△AOB的面积。
19.某社区在举办“文明奥运”宣传活动时,使用了如图所示的一种简易活动桌子(桌面AB与地面平行)。现测得OA=OB=30cm,OC=OD=50cm,若要求桌面离地面的高度为40cm,求两条桌腿的张角∠COD的度数。
18.如图,在正方形ABCD中,点E、F分别在BC、CD上,BE=CF,连结AE、BF相交于点G。现给出了四个结论:①AE=BF;②∠BAE=∠CBF;③BF⊥AE;④AG=FG。请在这些结论中,选择一个你认为正确的结论,并加以证明。
结论:_____________________________________________。
证明:
17.解不等式组,并把其解集在数轴上表示出来。
16.解分式方程
15.先化简,再求值:,其中
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com