0  130262  130270  130276  130280  130286  130288  130292  130298  130300  130306  130312  130316  130318  130322  130328  130330  130336  130340  130342  130346  130348  130352  130354  130356  130357  130358  130360  130361  130362  130364  130366  130370  130372  130376  130378  130382  130388  130390  130396  130400  130402  130406  130412  130418  130420  130426  130430  130432  130438  130442  130448  130456  447090 

3.下列运算正确的是(   )

A.-2=4                  B.2=-4

C. · =                 D.+2=3

试题详情

2.下列图形中,既是轴对称图形又是中心对称图形的是(   )                            

试题详情

1.-的相反数是(   )

A.-2       B.2      C.       D.

试题详情

29.已知二次函数的图象经过三点(1,0),(-3,0),(0,)。

(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像;(5分)

(2)若反比例函数图像与二次函数的图像在第一象限内交于点A(x0,y0), x0落在两个相邻的正整数之间。请你观察图像,写出这两个相邻的正整数;(4分)

(3)若反比例函数的图像与二次函数的图像在第一象限内的交点为A,点A的横坐标为满足2<<3,试求实数k的取值范围。(5分)

试题详情

28.2008年5月12日14时28分四川汶川发生里氏8.0级强力地震。某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区。乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时)。图中的折线、线段分别表示甲、乙两组所走路程(千米)、(千米)与时间x(小时)之间的函数关系对应的图像。请根据图像所提供的信息,解决下列问题:

(1)由于汽车发生故障,甲组在途中停留了_________小时;(2分)

(2)甲组的汽车排除故障后,立即提速赶往灾区。请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(6分)

(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不过25千米。请通过计算说明,按图像所表示的走法是否符合约定。

试题详情

27.如图,在矩形ABCD中,AB=2,AD=

(1)在边CD上找一点E,使EB平分∠AEC,并加以说明;(3分)

(2)若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F。

①求证:点B平分线段AF;(3分)

②△PAE能否由△PFB绕P点按顺时针方向旋转而得到?若能,加以证明,并求出旋转度数;若不能,请说明理由。(4分)

试题详情

26.已知关于x的不等式ax+3>0(其中a≠0)。

(1)当a=-2时,求此不等式的解,并在数轴上表示此不等式的解集;(4分)

(2)小明准备了十张形状、大小完全相同的不透明卡片,上面分别写有整数-10、-9、-8、-7、-6、-5、-4、-3、-2、-1,将这10张卡片写有整数的一面向下放在桌面上。从中任意抽取一张,以卡片上的数作为不等式中的系数a,求使该不等式没有正整数解的概率。(6分)

试题详情

25.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小护士”组成了“控制噪声污染”课题学习研究小组.该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位: dB ),将调查的数据进行处理(设所测数据均为正整数),得频数分布表如下:

组别
噪声声级分组
频数
频率
1
44.5~59.5
4
0.1
2
59.5~74.5
a
0.2
3
74.5~89.5
10
0.25
4
89.5~104.5
b
C
5
104.5~119.5
6
0.15
合计
 
40
1.00

   根据表中提供的信息解答下列问题:

(1)频数分布表中的a=___________,b=____________,c=____________;(3分)

(2)补充完整频数分布直方图;(2分)

(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75 dB的测量点约有多少个?(4分)

试题详情

24.如图,某堤坝的横截面是梯形ABCD,背水坡AD的坡度i(即tan)为1︰1.2,坝高为5米。现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽1米,形成新的背水坡EF,其坡度为1︰1.4。已知堤坝总长度为4000米。

(1)求完成该工程需要多少土方?(4分)

(2)该工程由甲、乙两个工程队同时合作完成,按原计划需要20天。准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率。甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成。问这两个工程队原计划每天各完成多少土方?(5分)

试题详情

23.如图,⊿ABC内接于⊙O,AD是⊿ABC的边BC上的高,AE是⊙O的直径,连接BE,⊿ABE与⊿ADC相似吗?请证明你的结论。

 

试题详情


同步练习册答案