2.如图,在平行四边形ABCD中,∠A=50°,求∠C的度数。(5分)
1.计算:2x+3x-4x.(5分)
26.(12分)如图,AB是⊙O的直径,点C在⊙O上,∠BOC=108°,过点C作直线CD分别交直线AB和⊙O于点D、E,连接OE,DE=AB,OD=2.
(1)求∠BDC的度数;
(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于.
①写出图中所有的黄金三角形,选一个说明理由;
②求弦CE的长;
③在直线AB或CD上是否存在点P(点C、D除外),使△POE是黄金三角形?若存在,画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.
附加题:(本题满分10分)
温馨提示:同学们做完上面试题后,再认真检查一遍,估计一下你的得分。如果全卷得分低于90分,请继续完成下面试题。
25.(12分)如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.
24.(10分)如图,在正方形ABCD中,E是AB边上任意一点,∠ECF=45°,CF交AD于点F,将△CBE绕点C顺时针旋转到△CDP,点P恰好在AD的延长线上.
(1)求证:EF=PF;
(2)直线EF与以C为圆心,CD为半径的圆相切吗?为什么?
23.(10分)为了支援四川汶川地震灾区人民重建家园,我市某校号召师生自愿捐款.已知第一次共捐款90000元,第二次共捐款120000元,第二次人均捐款额是第一次人均捐款额的1.2倍,捐款人数比比第一次多100人.问第一次和第二次捐款各多少元?
22.(10分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=130°,求菱形BCFE的面积(结果保留三个有效数字).
20.(8分)如图,方格纸上的每个小正方形的边长均为1.
(1)观察图①、②中所画的“L”型图形,然后补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形;
(2)补画后,图①、②中所成图形的是不是正方体的表面展开图(在括号内填“是”或“不是”):
答:图①中的图形( ),图②中的图形( ).
19.(8分)已知一次函数y=x+3的图象与反比例函数y=都经过点A(a,4).
(1)求a和k的值;
(2)判断点B(2,-)是否在该反比例函数的图象上.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com