23.(6分)为保证交通安全,汽车驾驶员必须知道汽车刹车后的停止距离(开始刹车到车辆停止车辆行驶的距离)与汽车行驶速度(开始刹车时的速度)的关系,以便及时刹车.下表是某款车在平坦道路上, 路况良好时刹车后的停止距离与汽车行驶速度的对应值表:
行驶速度(千米/时) |
|
|
|
|
停止距离(米) |
|
|
|
|
(1)设汽车刹车后的停止距离(米)是关于汽车行驶速度(千米/时)的函数,给出以下三个函数:①;②;③,请选择恰当的函数来描述停止距离(米)与汽车行驶速度(千米/时)的关系,说明选择理由,并求出符合要求的函数的解析式;(2)如果汽车刹车后的停止距离为米,那么根据你所选择的函数解析式,求汽车的行驶速度.
22.(5分)如图,梯形中,,,且.联结,过点作的垂线,交于点,垂足为.如果,,求梯形的面积.
21.(6分)某校九年级一班数学调研考试成绩绘制成频数分布直方图,如图(得分取整数).请根据所给信息解答下列问题:(1)这个班有多少人参加了本次数学调研考试?(2)-分数段的频数和频率各是多少?(3)请你根据统计图,提出一个与(1),(2)不同的问题,并给出解答.
20.(5分)用两个全等的正方形和拼成一个矩形,把一个足够大的直角三角尺的直角顶点与这个矩形的边的中点重合,且将直角三角尺绕点按逆时针方向旋转.
(1)当直角三角尺的两直角边分别与矩形的两边、相交于点、时,(如图甲),通过观察或测量与的长度,你能得到什么结论?并证明你的结论.
(2)当直角三角尺的两直角边分别与、的延长线相交于点、时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.
解:(1)得到的结论是 .
(2)得到的结论 .(填写“成立”、“不成立”)
19.(5分)已知:△内接于⊙,过点作直线,为非直径的弦,且。(1)求证:是⊙的切线;(2)若,,联结并延长交于点,求由弧、线段 和所围成的图形的面积.
18.(本小题满分5分) 已知:关于的一元二次方程.求证:不论 取何值时,方程总有两个不相等的实数根.
17.( 6分)已知一次函数的图象与反比例函数的图象相交,其中一个交点的纵坐标为-4.(1)求两个函数的解析式;(2)结合图象求出当时,的取值范围.
16.( 5分)为响应承办“绿色奥运”的号召,某班组织部分同学义务植树棵,由于同学们的积极参与,实际参加的人数比原计划增加了,结果每人比原计划少栽了棵,问实际有多少人参加了这次植树活动?
15.( 5分)先化简再求值: 其中满足.
14.(4分)△在平面直角坐标系中的位置如图所示,现将△经过两次变换:第一次是作出△关于轴对称的△;再将△向下平移4个单位长度,得到△.请你在下面的网格中画出平移后的△.(不写作法,保留作图痕迹,指明结果)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com