1. 集合
(1)集合的含义与表示
① 了解集合的含义,元素与集合的“属于”关系.
② 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.
(2)集合间的基本关系
① 理解集合之间包含与相等的含义,能识别给定集合的子集.
② 在具体情境中,了解全集与空集的含义.
(3)集合的基本运算
① 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.
② 理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
③ 能使用韦恩(Venn)图表达集合的关系及运算.
7.创新意识:能够独立思考,灵活和综合地运用所学的数学知识、思想和方法,创造性地提出问题、分析问题和解决问题.
考试范围是《普通高中数学课程标准(实验)》中的必修课程内容和选修系列2的内容以及选修系列4-5的部分内容,即
数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数).
数学2:立体几何初步、平面解析几何初步.
数学3:算法初步、统计、概率.
数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换.
数学5:解三角形、数列、不等式.
选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何.
选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入.
选修2-3:计数原理、统计案例、概率.
选修4-5:不等式的基本性质和证明的基本方法(指定选考).
6.应用意识:能够综合运用所学知识对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学思想和方法解决问题,并能用数学语言正确地表述和解释.
5.推理论证能力:能够根据已知的事实和已获得的正确数学命题,论证某一数学命题的真实性.
4.抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断.
3.空间想象能力:能够根据条件作出正确的图形,根据图形想象出直观形象;能够准确地理解和解释图形中的基本元素及其相互关系;能够对图形进行分解、组合;能够运用图形与图表等手段形象地揭示问题的本质和规律.
2.数据处理能力:能够收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确判断;能够根据所学知识对数据进行进一步的整理和分析,解决所给问题.
1.运算求解能力:能够根据法则和公式进行正确运算、变形;能够根据问题的条件,寻找并设计合理、简捷的运算方法;能够根据要求对数据进行估计和近似计算.
3.掌握:要求能够对所列知识进行准确的刻画或解释、推导或证明、分类或归纳;系统地把握知识间的内在联系,能够灵活运用所学知识,分析和解决较为复杂的数学问题以及一些现实问题.
二、能力要求
能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力,以及应用意识和创新意识.
2.理解:要求对所列知识内容有较为深刻的理性认识,清楚知识间的逻辑关系,能够用数学语言对它们作正确的描述、说明,能够利用所学的知识内容对有关的问题进行比较、判别、讨论、推测,具备解决简单问题的能力,并能初步应用数学知识解决一些现实问题.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com