(Ⅱ)如答(19)图3.由(Ⅰ)知,以D点为坐标原点,的方向为x、
y、z轴的正方向建立空间直角坐标系,则D(0,0,0),A(0,0,4),
,E(0,3,0).
过D作DF⊥CE,交CE的延长线
于F,连接AF.
设从而
,有
①
又由 ②
联立①、②,解得
因为,故,又因,所以为所求的二面角A-EC-B的平面角.因
有所以
因此所求二面角A-EC-B的大小为
如题(19)图,在中,B=,AC=,D、E两点分别在AB、AC上.使,DE=3.现将沿DE折成直二角角,求:
(Ⅰ)异面直线AD与BC的距离;
(Ⅱ)二面角A-EC-B的大小(用反三角函数表示).
解法一:(Ⅰ)在答(19)图1中,因,故BE∥BC.又因B=90°,从而
AD⊥DE.在第(19)图2中,因A-DE-B是直二面角,AD⊥DE,故AD⊥底面DBCE,从而AD⊥DB.而DB⊥BC,故DB为异面直线AD与BC的公垂线.
下求DB之长.在答(19)图1中,由,得
又已知DE=3,从而
因
(Ⅱ)在第(19)图2中,过D作DF⊥CE,交CE的延长线于F,连接AF.由(1)知,
AD⊥底面DBCE,由三垂线定理知AF⊥FC,故∠AFD为二面角A-BC-B的平面
角
在底面DBCE中,∠DEF=∠BCE,
因此
从而在Rt△DFE中,DE=3,
在
因此所求二面角A-EC-B的大小为arctan
解法二:
(Ⅰ)同解法一.
1、(08重庆卷)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)
18、(1)取BC的中点M,连接GM,AM,EM,如图a,则GM∥BD,
∴∠EGM(或其补角)就是异面直线EG与BD所成的角.
(2)假设在线段CD上存在一点Q满足题设条件,
过点Q作QR⊥AB于R,连接RE,如图b,则OR∥AD,
∵ABCD是正方形,△PAD是直角三角形,且PA=AD=2,
∴AD⊥AB,AD⊥PA,又有AB∩PA=A,
∴AD⊥平面PAB.
又∵E,F分别是PA,PD中点,
∴EF∥AD,∴EF⊥平面PAB.
又∵EF面EFQ,∴面EFQ⊥面PAB.
过A作AT⊥ER于T,则AT⊥平面EFQ,
∴AT就是点A到平面EFQ的距离.
设CQ=x(0≤x≤2),则BR=CO=x,AR=2-x,AE=1,
在Rt△EAR中,
故存在点Q,当时,点A到平面EFQ的距离为.
17、设“每掷1次,沿x轴方向移动+2”为事件A;“每掷1次,沿x轴方向移动-1”为事件B;“动点P到达点(2,7)”为事件C.
(1)掷两枚骰子点数之和不大于4点有下列四种情形:两枚均为1点;两枚均为2点;一枚1点,一枚2点;一枚1点,一枚3点.掷两枚骰子点数之和不小于10点也有四种情形:两枚均为5点;一枚5点,一枚6点;一枚4点,一枚6点;两枚均为6点.
(2)由(a)知,动点P到达点(2,7),必须掷7次骰子,设沿x轴方向移动+2有x次;沿x轴方向移动-1有y次.
15、根据定义求极限即可,可得①③⑤⑥有两条渐进线.
14、.
圆心到直线的距离,
故直线与圆相离.
13、第二次受击后进入木板部分的铁钉长度是钉长的,第三次为钉长的,
则有.
12、,
.
则,解得x=2.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com