(2)设B、C之间的弹簧第一次恢复到原长时B、C的速度大小分别为vB1和vC1,则由动量守恒和能量守恒:mBvB=mBvB1+mCvC1
代入数据解得:vB1=-1m/s,vC1=2m/s (vB1 =3m/s,vC1=0m/s不合题意,舍去.)
A爆炸后先向左匀速运动,与弹性挡板碰撞以后速度大小不变,反向弹回.当A追上B,发生碰撞瞬间达到共速vAB
由动量守恒,得mAvA+mBvB1=(mA+mB)vAB 解得vAB =1m/s
当A、B、C三者达到共同速度vABC时,弹簧的弹性势能最大为EP2
由动量守恒,得(mA+mB)vAB+mCvC1=(mA+mB+mC)vABC