1.= ( )
A. B. C. D.
22.(本题满分14分)
已知函数 (为自然对数的底数).
(1)求的最小值;
(2)不等式的解集为,若且求实数的取值范围;
(3)已知,且,是否存在等差数列和首项为公比大于0的等比数列,使得.若存在,请求出数列的通项公式.若不存在,请说明理由.
21.(本题满分12分)
设椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
x |
3 |
-2 |
4 |
|
|
y |
|
0 |
-4 |
|
- |
(1)求的标准方程;
(2)设直线与椭圆交于不同两点且,请问是否存在这样的直线过抛物线的焦点?若存在,求出直线的方程;若不存在,说明理由.
20.(本题满分12分)
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数.并说明它在乙组数据中的含义;
(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;
(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望
19.(本题满分12分)
如下图的多面体是底面为平行四边形的直四棱柱,经平面所截后得到的图形.其中,,.
(1)求证:平面;
(2)求平面与平面所成锐二面角的余弦值.
18.(本题满分12)
已知,其中,
().若图象中相邻的对称轴间的距离不小于.
(1)求的取值范围
(2)在中,分别为角的对边.且,当 最大时.求面积.
17.(本题满分12)
设非负实数、满足不等式组
(1)如下图在所给的坐标系中,画出不等式组所表示的平面区域;
(2)求的取值范围;
(3)在不等式组所表示的平面区域内,求点()落在∈[1,2]区域内的概率.
16.设,且关于不等式 .的解集有且仅有5个元素.则的值是 .
15.对任意非零实数.若的运算原理如下图所示.则 .
14.若函数则 .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com