y=f(r)=0.2×πr3-0.8πr2=0.8π(-r2),0<r≤6. 2分
19.(本小题满分10分)某制造商制造并出售球形瓶装的某种饮料.瓶子的制造成本是0.8πr2分(其中r是瓶子的半径,单位是厘米).已知每出售1 mL的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6 cm.
(1)瓶子半径多大时,能使每瓶饮料的利润最大?
(2)瓶子半径多大时,每瓶饮料的利润最小?
分析 本题考查导数的应用及利用导数知识解决实际问题的能力.
解 由于瓶子的半径为r,所以每瓶饮料的利润是
解得x=9.因为x=9∈[1,10],y只有一个极值点,所以它是最值点,即在相同的时间内,生产第9档次的产品利润最大,最大利润为864元.
求导数,得y′=-12x+108.
令y′=-12x+108=0,
解法二 由上面解法得到y=-6x2+108x+378.
18.★(本小题满分10分)某产品按质量分为10个档次,生产第一档(即最低档次)的利润是每件8元,每提高一个档次,利润每件增加2元,但在相同的时间内产量减少3件.在相同的时间内,最低档的产品可生产60件.问在相同的时间内,生产第几档次的产品的总利润最大?有多少元?
分析 在一定条件下,“利润最大”“用料最省”“面积最大”“效率最高”“强度最大”等问题,在生产、生活中经常用到,在数学上这类问题往往归结为求函数的最值问题.除了常见的求最值的方法外,还可用求导法求函数的最值.但无论采取何种方法都必须在函数的定义域内进行.
解法一 设相同的时间内,生产第x(x∈N*,1≤x≤10)档次的产品利润y最大. 2分
依题意,得y=[8+2(x-1)][60-3(x-1)] 4分
=-6x2+108x+378
=-6(x-9)2+864(1≤x≤10), 8分
显然,当x=9时,ymax=864(元),
即在相同的时间内,生产第9档次的产品的总利润最大,最大利润为864元. 10分
∴f(x)在[-2,2]上的最大值为,最小值为. 8分
又f()=-,f(-1)=,f(-2)=0,f(2)=0, 7分
由f′(x)=0,得x=或x=-1. 5分
∴f′(x)=3x2-x-4.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com