19.(本小题16分)
已知函数在[1,+∞)上为增函数,且θ∈(0,π),,m∈R.
(1)求θ的值;
(2)若在[1,+∞)上为单调函数,求m的取值范围;
(3)设,若在[1,e]上至少存在一个,使得成立,求的取值范围.
18.(本小题15分)
抛物线的焦点为F,在抛物线上,且存在实数λ,使0,.
(1)求直线AB的方程;
(2)求△AOB的外接圆的方程.
17.(本小题15分)
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 |
12月1日 |
12月2日 |
12月3日 |
12月4日 |
12月5日 |
温差(°C) |
10 |
11 |
13 |
12 |
8 |
发芽数(颗) |
23 |
25 |
30 |
26 |
16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
16.(本小题14分)
如图,在四边形ABCD中,AD=8,CD=6,AB=13,∠ADC=90°,且.
(1)求sin∠BAD的值;
(2)设△ABD的面积为S△ABD,△BCD的面积为S△BCD,求的值.
15.(本小题14分)
如图,在正三棱柱ABC-A1B1C1中,点D在边BC上,AD⊥C1D.
(1)求证:AD⊥平面BC C1 B1;
(2)设E是B1C1上的一点,当的值为多少时,A1E∥平面ADC1?请给出证明.
14.设函数,记,若函数至少存在一个零点,则实数m的取值范围是 .
13.在△ABC中,,D是BC边上任意一点(D与B、C不重合),且,则等于 .
12.根据下面一组等式:
…………
可得 .
11.数列中,,且(,),则这个数列的通项公式 .
10.在闭区间 [-1,1]上任取两个实数,则它们的和不大于1的概率是 .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com