6.方程2cos(2x–) = 1的解是 .
5.现有形状特征一样的若干个小球,每个小球上写着一个两位数,一个口袋里放有标着所有不同的两位数的小球,现任意取一个小球,取出小球上两位数的十位数字比个位数字大的概率是 .
4.在公差不为零的等差数列{an}中,Sm=Sn(m≠ n),则Sm+n值是 .
3.向量、满足||=2,||=3,且|+|=,则.= .
2.已知f(x),则=____________.
1.设全集U ={a、b、c、d、e}, 集合A={a、b},B={b、c、d},则A∩CUB=________.
22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分)
由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f –1(x)能确定数列{bn},bn= f –1(n),若对于任意nÎN*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.
(1)若函数f(x)=确定数列{an}的自反数列为{bn},求an;
(2)在(1)条件下,记为正数数列{xn}的调和平均数,若dn=,Sn为数列{dn}的前n项之和,Hn为数列{Sn}的调和平均数,求;
(3)已知正数数列{cn}的前n项之和 求Tn表达式.
21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分)
设有抛物线C:y= –x2+x–4,通过原点O作C的切线y=mx,使切点P在第一象限.
(1)求m的值,以及P的坐标;
(2)过点P作切线的垂线,求它与抛物线的另一个交点Q;
(3)设C上有一点R,其横坐标为t,为使DOPQ的面积小于DPQR的面积,试求t的取值范围.
20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)
在美国广为流传的一道数学题目是:老板给你两种加工资的方案。第一种方案是每年年末(12月底)加薪一次,每次所加的工资数是在上次所加工资数的基础上再增加1000元;第二种方案是每半年(6月底和12月底)各加薪一次,每次所加的工资数是在上次所加工资数的基础上再增加300元,请选择一种.
根据上述条件,试问:
(1)如果你将在该公司干十年,你将选择哪一种加工资的方案?(说明理由)
(2)如果第二种方案中的每半年加300元改成每半年加a元,那么a在什么范围内取值时,选择第二种方案总是比选择第一种方案多加薪?
19.(本题满分14分)本题共有3个小题,第1小题满分4分,第2、3小题满分各5分)
已知边长为6的正方形ABCD所在平面外一点P,PD^ 平面ABCD,PD=8,
(1)连接PB、AC,证明:PB ^ AC;
(2)求PB与平面ABCD所成的角的大小;
(3)求点D到平面PAC的距离.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com