0  163085  163093  163099  163103  163109  163111  163115  163121  163123  163129  163135  163139  163141  163145  163151  163153  163159  163163  163165  163169  163171  163175  163177  163179  163180  163181  163183  163184  163185  163187  163189  163193  163195  163199  163201  163205  163211  163213  163219  163223  163225  163229  163235  163241  163243  163249  163253  163255  163261  163265  163271  163279  447090 

3.若函数是定义在R上的偶函数,在上是减函数,且,则使得x的取值范围是         (   )

   A.     B.     C.   D.(-2,2)

试题详情

2.(   )

   A.        B.-       C.      D.-

试题详情

1.圆关于原点(0,0)对称的圆的方程为 (   )

   A.           B.

   C.       D.

试题详情

20.设点(,0),和抛物线yx2+an x+bn(n∈N*),其中an=-2-4n由以下方法得到:

  x1=1,点P2(x2,2)在抛物线C1yx2+a1x+b1上,点A1(x1,0)到P2的距离是A1C1上点的最短距离,…,点在抛物线yx2+an x+bn上,点(,0)到的距离是 上点的最短距离.

  (Ⅰ)求x2C1的方程.

  (Ⅱ)证明{}是等差数列.

试题详情

19.袋子AB中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p

  (Ⅰ) 从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i)求恰好摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为,求随机变量的分布列及数学期望E

  (Ⅱ) 若AB两个袋子中的球数之比为1:2,将AB中的球装在一起后,从中摸出一个红球的概率是,求p的值.

试题详情

18.如图,在三棱锥PABC中,ABBCABBCkPA,点OD分别是ACPC的中点,OP⊥底面ABC

  (Ⅰ)求证OD∥平面PAB;

(Ⅱ)当k时,求直线PA与平面PBC所成角的大小;

   (Ⅲ) 当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?

试题详情

17.如图,已知椭圆的中心在坐标原点,焦点F1F2x轴上,长轴A1A2的长为4,左准线lx轴的交点为M,|MA1|∶|A1F1|=2∶1.

  (Ⅰ)求椭圆的方程;

  (Ⅱ)若直线l1xm(|m|>1),Pl1上的动点,使∠F1PF2最大的点P记为Q,求点Q的坐标(用m表示).

试题详情

16.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x

  (Ⅰ)求函数g(x)的解析式;

  (Ⅱ)解不等式g(x)≥f(x)-|x-1|.

试题详情

15.已知函数f(x)=-sin2x+sinxcosx

  (Ⅰ) 求f()的值;

  (Ⅱ) 设∈(0,),f()=,求sin的值.

试题详情

14.从集合{OPQRS}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母OQ和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).

试题详情


同步练习册答案