26.(本小题为选做题,满分8分)
用数学归纳法证明不等式:.
25.(本小题为选做题,满分8分)
试求曲线在矩阵MN变换下的函数解析式,其中M =,N =.
24.(本小题为选做题,满分8分)
已知直线的参数方程:(为参数)和圆的极坐标方程:
.
(1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;
(2)判断直线和圆的位置关系.
23.(本小题为选做题,满分8分)
如图,在△中,是的中点,是的中点,的延长线交于.
(1)求的值;
(2)若△的面积为,四边形的面积为,求的值.
22.(本小题为必做题,满分12分)
甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0.75.
(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;
(2)设经过两次考试后,能被该高校预录取的人数为,求随机变量的期望.
21.(本小题为必做题,满分12分)
已知直线被抛物线截得的弦长为20,为坐标原点.
(1)求实数的值;
(2)问点位于抛物线弧上何处时,△面积最大?
20.(本小题满分18分)
已知数列的通项公式是,数列是等差数列,令集合,,.将集合中的元素按从小到大的顺序排列构成的数列记为.
(1)若,,求数列的通项公式;
(2)若,数列的前5项成等比数列,且,,求满足
的正整数的个数.
B.附加题部分
19.(本小题满分16分)
已知函数()的图象为曲线.
(1)求曲线上任意一点处的切线的斜率的取值范围;
(2)若曲线上存在两点处的切线互相垂直,求其中一条切线与曲线的切点的横坐标的取值范围;
(3)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.
18.(本小题满分14分)
已知函数,.
(1)求函数在内的单调递增区间;
(2)若函数在处取到最大值,求的值;
(3)若(),求证:方程在内没有实数解.
(参考数据:,)
17.(本小题满分14分)
如图,已知圆心坐标为的圆与轴及直线分别相切于、两点,另一圆与圆外切、且与轴及直线分别相切于、两点.
(1)求圆和圆的方程;
(2)过点B作直线的平行线,求直线被圆截得的弦的长度.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com